Transcript Document

Combinational Logic Design –
Design Procedure,
Encoders/Decoders
Overview



Design Procedure
Code Converters
Binary Decoders




21-Jul-15
Expansion
Circuit implementation
Binary Encoders
Priority Encoders
[email protected]
2
Combinational Circuit Design


Design of a combinational circuit is the
development of a circuit from a description of
its function.
Starts with a problem specification and
produces a logic diagram or set of boolean
equations that represent the circuit.
21-Jul-15
[email protected]
3
Design Procedure
1.
2.
3.
4.
5.
21-Jul-15
Determine the required number of inputs and
outputs and assign variables to them.
Derive the truth table that defines the required
relationship between inputs and outputs.
Obtain and simplify the Boolean function (K-maps,
algebraic manipulation, CAD tools, …). Consider
any design constraints (area, delay, power,
available libraries, etc).
Draw the logic diagram.
Verify the correctness of the design.
[email protected]
4
Design Example

Design a combinational circuit with 4 inputs
that generates a 1 when the # of 1s equals
the # of 0s. Use only 2-input NOR gates
…
21-Jul-15
[email protected]
5
More Examples - Code Converters

Code Converters transform/convert
information from one code to another:

BCD-to-Excess-3 Code Converter


BCD-to-Seven-Segment Converter

21-Jul-15
Useful in some cases for digital arithmetic
Used to display numeric info on 7 segment displays
[email protected]
6
BCD-to-Excess-3 Code Converter



21-Jul-15
Design a circuit that converts a binary-codeddecimal (BCD) codeword to its corresponding
excess-3 codeword.
Excess-3 code: Given a decimal digit n, its
corresponding excess-3 codeword (n+3)2
Example:
n=5  n+3=8  1000excess-3
n=0  n+3=3  0011excess-3
We need 4 input variables (A,B,C,D) and 4 output
functions W(A,B,C,D), X(A,B,C,D), Y(A,B,C,D),
and Z(A,B,C,D).
[email protected]
7
BCD-to-Excess-3 Converter (cont.)


The truth table relating the input and output variables is shown below.
Note that the outputs for inputs 1010 through 1111 are don't cares (not
shown here).
21-Jul-15
[email protected]
8
Maps for BCD-to-Excess-3 Code Converter
The K-maps for are constructed using the don't care terms
21-Jul-15
[email protected]
9
BCD-to-Excess-3 Converter (cont.)
21-Jul-15
[email protected]
10
Another Code Converter Example:
BCD-to-Seven-Segment Converter

Seven-segment display:



7 LEDs (light emitting diodes), each one controlled
by an input
a
1 means “on”, 0 means “off”
f
b
Display digit “3”?
g
 Set a, b, c, d, g to 1
 Set e, f to 0
e
c
21-Jul-15
[email protected]
d
11
BCD-to-Seven-Segment Converter



Input is a 4-bit BCD code  4 inputs (w, x, y,
z).
Output is a 7-bit code (a,b,c,d,e,f,g) that allows
for the decimal equivalent to be displayed.
Example:
a


21-Jul-15
Input: 0000BCD
Output: 1111110
(a=b=c=d=e=f=1, g=0)
f
g
e
[email protected]
b
c
d
12
BCD-to-Seven-Segment (cont.)
Truth Table
Digit
wxyz
abcdefg
Digit
wxyz
abcdefg
0
0000
1111110
8
1000
1111111
1
0001
0110000
9
1001
111X011
2
0010
1101101
1010
XXXXXXX
3
0011
1111001
1011
XXXXXXX
4
0100
0110011
1100
XXXXXXX
5
0101
1011011
1101
XXXXXXX
1110
XXXXXXX
1111
XXXXXXX
6
0110
X011111
7
0111
11100X0
??
21-Jul-15
[email protected]
13
Decoders



A combinational circuit that converts binary
information from n coded inputs to a
maximum 2n decoded outputs
 n-to- 2n decoder
n-to-m decoder, m ≤ 2n
Examples: BCD-to-7-segment decoder,
where n=4 and m=7
21-Jul-15
[email protected]
14
Decoders (cont.)
21-Jul-15
[email protected]
15
2-to-4 Decoder
21-Jul-15
[email protected]
16
2-to-4 Active Low Decoder
21-Jul-15
[email protected]
17
3-to-8 Decoder
data
address
21-Jul-15
[email protected]
18
3-to-8 Decoder (cont.)





Three inputs, A0, A1, A2, are decoded into eight
outputs, D0 through D7
Each output Di represents one of the minterms of
the 3 input variables.
Di = 1 when the binary number A2A1A0 = i
Shorthand: Di = mi
The output variables are mutually exclusive; exactly
one output has the value 1 at any time, and the
other seven are 0.
21-Jul-15
[email protected]
19
Implementing Boolean functions
using decoders



Any combinational circuit can be constructed using
decoders and OR gates! Why?
Here is an example:
Implement a full adder circuit with a decoder and two
OR gates.
Recall full adder equations, and let X, Y, and Z be the
inputs:



S(X,Y,Z) = X+Y+Z = m(1,2,4,7)
C (X,Y,Z) = m(3, 5, 6, 7).
Since there are 3 inputs and a total of 8 minterms, we
need a 3-to-8 decoder.
21-Jul-15
[email protected]
20
Implementing a Binary Adder
Using a Decoder
S(X,Y,Z) = Σm(1,2,4,7)
C(X,Y,Z) = Σm(3,5,6,7)
21-Jul-15
[email protected]
21
Decoder Expansions
Larger decoders can be constructed using
a number of smaller ones.
-> HIERARCHICAL design!
Example:
A 6-to-64 decoder can be designed using
four 4-to-16 and one 2-to-4 decoders.
How? (Hint: Use the 2-to-4 decoder to
generate the enable signals to the four 4to-16 decoders).
21-Jul-15
[email protected]
22
3-to-8 decoder using two 2-to-4 decoders
21-Jul-15
[email protected]
23
4-input tree decoder
21-Jul-15
[email protected]
24
Encoders


An encoder is a digital circuit that performs
the inverse operation of a decoder. An
encoder has 2n input lines and n output lines.
The output lines generate the binary
equivalent of the input line whose value is 1.
21-Jul-15
[email protected]
25
Encoders (cont.)
21-Jul-15
[email protected]
26
Encoder Example

Example: 8-to-3 binary encoder (octal-to-binary)
A0 = D1 + D3 + D5 + D7
A1 = D2 + D3 + D6 + D7
A2 = D4 + D5 + D6 + D7
21-Jul-15
[email protected]
27
Encoder Example (cont.)
21-Jul-15
[email protected]
28
Simple Encoder Design Issues
There are two ambiguities associated with the
design of a simple encoder:

1.
2.
21-Jul-15
Only one input can be active at any given time. If two
inputs are active simultaneously, the output produces an
undefined combination (for example, if D3 and D6 are 1
simultaneously, the output of the encoder will be 111.
An output with all 0's can be generated when all the
inputs are 0's,or when D0 is equal to 1.
[email protected]
29
Priority Encoders



Solves the ambiguities mentioned above.
Multiple asserted inputs are allowed; one has
priority over all others.
Separate indication of no asserted inputs.
21-Jul-15
[email protected]
30
Example: 4-to-2 Priority Encoder
Truth Table
21-Jul-15
[email protected]
31
4-to-2 Priority Encoder (cont.)



The operation of the priority encoder is such
that:
If two or more inputs are equal to 1 at the
same time, the input in the highest-numbered
position will take precedence.
A valid output indicator, designated by V, is
set to 1 only when one or more inputs are
equal to 1. V = D3 + D2 + D1 + D0 by
inspection.
21-Jul-15
[email protected]
32
Example: 4-to-2 Priority Encoder
K-Maps
21-Jul-15
[email protected]
33
Example: 4-to-2 Priority Encoder
Logic Diagram
21-Jul-15
[email protected]
34
8-to-3 Priority Encoder
21-Jul-15
[email protected]
35
A Matrix of switches = Keypad
C0
21-Jul-15
C1
C2
C3
1
2
3
F
R0
4
5
6
E
R1
7
8
9
D
R2
0
A
B
C
R3
[email protected]
36
Keypad Decoder IC - Encoder
COL.
4-bit
1
2
3
F
4
5
6
E
7
8
9
D
0
A
B
C
21-Jul-15
4-bit
Binary
(encoded)
ROW
4-bit
[email protected]
37
Priority Interrupt Encoder
Schematic
Interrupting
Devices
Interrupt
Encoder
Microprocessor
Device A
Req(1:0)
Device B
Device C
Device D
IntRq
21-Jul-15
[email protected]
38
Priority Encoding - Interrupt
Requests
Interrupting Device
A
B
C
D
Req (1:0)
IntRq
0
0
0
0
00
0
0
0
0
1
00
1
0
0
1
0
01
1
0
0
1
1
01
1
0
1
0
0
10
1
Exercise: Complete this table?
21-Jul-15
[email protected]
39