Transcript Slide 1
Thermodynamics and Kinetics study of growth behavior of sono-electrodeposited Cu thin films Sabita Rout, A. Mallik, B. C. Ray [email protected] [email protected] [email protected] , Department of Metallurgical and Materials Engineering National Institute of Technology, Rourkela Growth of thin films – an insight The growth parable Sono-electrodeposition technique Experimental /Results and discussion Conclusions References Growth of thin films (Time bound Grain growth) (Property change with variation of grain size) Harper et.al, Journal of applied Physics, 86 (1999) 2516-2524 The growth Parable Grain growth mechanism Sources Grain boundaries Stacking faults Dislocations Surface energy Elastic strain Pinning particles Ostwald ripening Triple junctions Zener pinning Two modes of grain growth Normal grain growth Abnormal grain growth Model 2 Model 1 Sequence of different sizes Different sizes Model 4 Model 3 Sequence of same sizes Same sizes (Growth models) Normal vs. abnormal grain growth Normal grain growth Follows a parabolic law D D02 Kt Abnormal grain growth Grain boundary velocity is given by v ( CG / TV ) exp( G m a / RT ) Diameter of grains comparable to the film thickness Diameter of grains exceeds ten times the film thickness Growth is slow and steady Growth is rapid and abrupt A monomodal distribution of grain sizes A bimodal distribution of grain sizes after growth after growth Sono-electrodeposition The coupled effect of electrochemistry and ultrasound • Extreme fast mass transport • Affects the crystallization process • Degassing at the electrode surface (The effects) (A cavitation bubble) cavitation (The equipment) Reaction kinetics - > cyclic voltammetry 0.14 b 0.12 0.10 Current (A) 0.08 a 0.06 0.04 0.02 0.00 -0.02 5C 10 C 15 C 20 C 25 C -0.04 -0.06 -0.08 -0.10 -0.12 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Potential (V) Cyclic Voltammetry of copper deposits at (a)Sonicntion (b) Silent Bath temp (°C) Oxidation potential (V) Cathodic efficiency 5 +0.567 1.6 10 +0.626 0.79 15 +0.626 0.92 20 +0.626 0.72 25 +0.626 0.84 Portela et.al , Electrochimica Acta, 51 (2006) 3261-3268 Nucleation mechanism - > Chrono amperometry analysis: -0.015 Current/A -0.020 -0.025 5C 10 C 15 C 20 C 25 C -0.030 -0.035 0 5 10 15 20 Time/sec (Deposition at silent condition) (Deposition at -0.3V) Table: Characteristic kinetic parameters of current transients obtained for sonicated copper deposits 2 Bath temp 20 °C Imax (A/cm ) (°C) tmax(s) D x 10-9 (cm2 s-1 ) N x 1010 (cm-2 ) 5 0.0228 1.726 1.1673 4.5604 10 0.0184 0.885 1.2246 3.273 15 0.0175 1.139 1.4257 2.1844 20 0.0162 1.349 1.447 1.8171 25 0.0238 1.685 3.9011 0.5396 Mallik et.al , Electrochemical and Solid State Letters, 12 (2009) F46-F49 Han et.al, Electrochimica Acta, 54 (2009) 3419-3427 Thermodynamics and Kinetics - > DSC analysis: Heat release increases with decrease in temperature The exothermic peak observed around 320°C Activation energy is in the range, 0.85-2.9 eV (DSC thermograms at scan rate of 5°/min ) Kissinger equation -9.8 -10.0 -10.2 Ln(/Tm2) -10.4 Table: Activation energies -10.6 -10.8 -11.0 -11.2 5C 10C 15C 20C 25C -11.4 0.00150 0.00151 0.00152 0.00153 0.00154 0.00155 0.00156 0.00157 0.00158 0.00159 0.00160 0.00161 0.00162 0.00163 Copper deposition at (°C) Activation energy (eV/atom) 5 0.85 10 2.90 15 1.51 20 1.50 25 1.35 1/Tm(1/K) Growth mode - >surface energy (Water on deposit ) Table: Surface energy values Temperature (°C) S. E (mN/m) Before DSC S.E (mN/m) After DSC 5 59.92 55.62 10 51.58 34.24 15 45.84 67.86 20 41.77 43.21 25 30.48 32.30 (SE determination by Owens-Wendt & Kaelble (OW) method) Decrease in temperature – increase in SE Fluctuations in SE after thermal treatment – abnormal to normal growth behavior XRD analysis 40 50 60 Cu(111) 450 a 15 C 20 C 25 C b 400 C(1011) Cu(022) Cl(721) Cu(113) 25 C 20 C Intensity(arb.units) Intensity(arb.units) 500 1600 1500 1400 Cu(111) 1300 1200 1100 S(0214) Cu(200) 1000 S(062) 900 800 700 600 500 400 300 200 100 0 350 300 Cu(200) S(062) S(0214) 90 Cl(721) Cu(113) 200 150 100 10 C 50 0 40 80 Cu(022) 250 15 C 5C 70 C(1011) 50 60 70 80 90 100 2(degree) 100 2(degree) XRD plots of copper deposits (a) before DSC (b) after DSC A Bath temperature (°C) Size (nm) Strain x 10-3 5 12.4416 5.5025 10 22.3809 15 B Bath temperature (°C) Size (nm) Strain x 10-3 4.0702 15 102.119 1.81075 53.159 2.1285 20 116.4013 1.0675 20 65.5048 1.815 25 182.5815 0.2787 25 230.5810 0.0475 Size and strain calculated from XRD plots for copper thin film (A) before DSC (B) after DSC SEM analysis both before and after DSC: a a b c d e f g h i jj c d Model-1 Model-4 Model-1 (SEM images of copper deposited at 5 °C, 10°C, 15°C, 20°C, 25°C under sonication condition (a-e) as deposited (f-j) after DSC) Conclusions Better adherence of deposit by sono-electrodeposition. The appearance of exothermic peak signifies occurrence of grain growth. Determination of activation energy provides information about the kinetics of grain growth. Whether proposed growth mechanism are the correct way to explore grain growth, will remain unclear until further investigations down to single grain or monolayer films References 1. J. M. Zhang, K. W. Xu, V. Ji. Competition between surface and strain energy during grain growth in free-standing and attached Ag and Cu films on Si substrates. Applied surface science 187 (2002) 60-67. 2. J. M. E. Harper, C. Cabral, P. C. Andricacos, L. Gignac, I. C. Noyan. Mechanisms for microstructure evolution in electroplated copper thin films near room temperature. Journal of applied physics 86 (1999) 2516-2525. 3. F. P. Luce, P. F. P. Fichtner, L. F. Schelp. Abnormal grain growth behavior in nanostructured Al thin films on SiO2/Si substrate. Material Research Society 1150 (2009) RR03-06. 4. C. Detavernier, S.Rossnagel, C. Noyan, S. Cabral. Thermodynamics and kinetics of room-temperature microstructural evolution in copper films. Journal of applied physics 94 (2003) 2874-2881. 5. A. Mallik, A. Bankoti, B. C. Ray. A Study on the Modification of Conventional Electrochemical Crystallization under Sonication: The Phenomena of Secondary Nucleation. Electrochemical and Solid-State Letters 12 (2009) F-46-F-49. 6. R. Cow, R. Blindt, R. Chivers, M. Povey. A study on the primary and secondary nucleation of ice by power ultrasound. Ultrasonics 43 (2005) 227-230. 7. D. Bera, S. C. Kuiry, S. Seal. Kinetics and Growth Mechanism of Electrodeposited Palladium Nanocrystallites. Journal of Physical Chemistry 108 (2004) 556-562. 8. R. Finsy. On the Critical Radius in Ostwald Ripening. Langmuir 20 (2004) 2975-2976. 9. K. B. Yin, Y.D. Xia, C. Y. Chan, W. Q. Zhang. The kinetics and mechanism of room-temperature microstructural evolution in electroplated copper foils. Scripta Materialia 58 (2008) 65-68. 10. S. Villain, P. Knauth, G. Schwitzgebel. Electrodeposition of Nanocrystalline Silver: Study of Grain Growth by Measurement of Reversible Electromotive Force. Journal of Physical Chemistry 101 (1997) 7452-7454. 11. H. E. Kissinger. Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry 29 (1957) 1702-1706. 12. L. Zhou, H. Zhang, D. J. Srolovitz. A size effect in grain boundary migration: A molecular dynamics study of bicrystal thin films. Acta Materialia 53 (2005) 5273-5279. 13. S. K. Donthu, M. Vora, S. K. Lahiri, C. V. Thompson. Activation Energy Determination for Recrystallization in Electroplated-copper films using Differential Scanning Calorimetry. Journal of Electronic Materials 32 (2003) 531-534. 14. P. Knauth, A. Charai, P. Gas. Grain growth of pure nickel and of Ni-Si solid solution studied by Differential Scanning Calorimetry of nanometer-sized crystals. Scripta Metallurgica Materialia 28 (1993) 325-330.