Transcript Document

Mathematics
Session
Differentiation - 3
Session Objectives

Logarithmic Differentiation, Infinite Series

Differentiation of Parametric Functions,
Functions w. r. t. Another Function

Second Order Derivatives

Class Exercise
Logarithmic Differentiation
(1) When the functions of the form
f  x 
g x 
we first take logarithms and then differentiate.
(2) When the function is a product of many simpler functions.
Sin2x Sin3x Sin4x
In this case, logarithm converts the product into a sum.
Example-1
x 

y=x
x
Differentiate:
w.r.t. x.
Solution:
x 
y=x
x
Taking log of both sides, we get
 x  = xxlogx
logy = logx
x
Taking log again, we get
loglogy =log(xxlogx)
 loglogy = xlogx +loglogx
Solution Cont.

1
1 dy
1
1
1
×
= x× +logx×1+
×
logy y dx
x
logx x


dy
1 
= ylogy 1+logx +

dx
xlogx 

x 

Substituting, y = x
and logy = xxlogx
x
xx  x

dy
1 

=x
x logx 1+logx +

dx
xlogx 

xx  x 
dy
1

2

=x
x logx + logx  + 
dx
x

Example-2
Differentiate: Sin2x Sin3x sin4x w.r.t.x.
Solution:
Let y = Sin2x Sin3x sin4x
Taking log of both sides, we get
logy = logsin2x +logsin3x +logsin4x

1 dy
1
1
1
×
=
cos2x×2+
cos3x×3+
cos4x×4
y dx sin2x
sin3x
sin4x

dy
= y 2cot2x+3cot3x+4cot4x
dx

dy
=  sin2xsin3xsin4x  2cot2x+3cot3x+4cot4x
dx
Example-3
dy
If x + y = a , find
.
dx
y
x
b
Solution: We have xy + yx = ab
Let u = xy and v = yx
 u+ v = ab
du dv

+
=0
dx dx
Con.
Now u = xy
 logu = ylogx
 Taking log on both sides
dy
1 du
1
= y +logx×
u dx
x
dx
dy 
du
y

= u  +logx
dx
dx 
x

dy 
du

= xy-1  y + xlogx

dx
dx


Differentiating both sides
Con.
Also, v = yx
logv = xlogy
1 dv
1 dy
 x
 log y
v dx
y dx
 Taking log on both sides
Differentiating
 dy

x
+
ylogy
 dx

dv

=v

dx
y




dv

x-1  dy

=y
x
+
ylogy
 dx

dx


both sides 
Con.
du dv

+
=0
dx dx
dy 

x-1  dy
 y + xlogx dx  + y  x dx + ylogy  = 0




y-1 
x

y
x-1
 x logx + xy



dy
+ yxy-1 + yxlogy = 0
dx
y-1

dy
+ yxlogy 
 yx


=-

y
x-1
dx

 x logx + xy 

Differentiation of Infinite Series
y=x
...
xx
 y = xy
Taking log on both sides, we get
logy = ylogx

1 dy
1
dy
= y× +logx
y dx
x
dx

 y
dy  1
logx

=
dx  y
 x
dy
y2

=
dx x 1- ylogx 
Parametric Functions
When two variables x and y are expressed in the form
x = f(t), y = g(t) , where t is a parameter
dx
dy
= f'  t  ,
= g'  t 
dt
dt
dy
dy

= dt
dx dx
dt
Example-4
If x = acos3t and y = asin3t, find
Solution:
dy
dx
We have x = acos3t and y = asin3t
Differentiating w.r.t. t, we get
dx
dy
=-3acos2t sint and
=3asin2t cost
dt
dt
dy
2
dy
3asin
tcost

= dt =
= -tant
2
dx dx -3acos tsint
dt
Differentiation of Functions
w. r. t. Another Function
u = f(x) and v = g(x)
Derivative of f(x) with respect to g(x)
du
du dx
=
is
dv dv
dx
Example-5
Differentiate tan2 x w.r.t. cos2 x.
Solution: Let y = tan2x and z = cos2x

dy
d

=
tan2 x
dx dx

 2 tan x  sec 2 x

dz
d
Also
=
cos2 x
dx dx
= 2cosx -sinx 

Con.
dy dy dx

=
×
dz dx dz
1
= 2tanxsec x×
-2sinxcosx
2
-sinx
1
=
×
3
cos x sinxcosx
= -sec4 x
Example-6
-1
Differentiate sin
 2x

 1 + x2

-1
 w.r.t. cos

 1 - x2

 1 + x2

Solution:
2 


-1 1 - x
and v = cos 


2
2

 1+ x 
 1+ x 
-1 
Let u = sin
2x
Putting x = tanq
2 

2tanθ 
-1 1 - tan θ
and v = cos 


2 
2 

 1+ tan θ 
 1+ tan θ 
-1 
u = sin
 u = sin-1 sin2θ and v = cos-1 cos2θ

 , if 0 < x < 1.


Solution Cont.
 u = 2θ and v = 2θ
Differentiating w.r.t. x, we get

du
dv
= 2 and
=2
dθ
dθ
du
du dθ 2

=
= =1
du 2
dv
dθ
Second Order Derivatives
y = ƒ x
dy
 First order differential coefficient
dx
d  dy  d2 y
=
 Second order differential coefficient


2
dx  dx  dx
Example-7
 x2 
dy
If y = log 
, find
.

 e2 
dx


Solution:
 x2 
y = log 

 e2 


 y = logx2 - loge2

 y = 2logx - 2
dy 2
= -0
dx x
d  dy 
2
d2y
2

=

=
dx  dx 
x2
dx2
x2
Example-8
If y = ex  sinx + cosx  , prove that
d2 y
dx2
-2
dy
+ 2y = 0.
dx
Solution: We have y = ex sinx +cosx 

dy
= ex cosx - sinx  + ex sinx + cosx 
dx
dy

= 2ex cosx
dx

d2 y
dx2
= 2ex -sinx  + 2ex cosx
Con.

d2 y
dx2
LHS =
= 2ex  cosx - sinx 
d2 y
dx2
-2
dy
+ 2y
dx
= 2ex cosx - sinx  - 2×2excosx +2×ex sinx +cosx 
= 0 = RHS
Thank you