Transcript Document
Direct Reactions at Eurisol In the light of the TIARA+MUST2 campaign at GANIL B. Fernández-Domínguez Physics Motivation EURISOL FW5 report : SCIENTIFIC CASE (Appendix A): Direct reactions are a unique tool to uncover and investigate new manifestations of nuclear structure of exotic nuclei Elastic and inelastic scattering -> nuclear and transition densities Transfer, knock-out and break-up reactions -> microscopic shell-structure -Inverse kinematics Detection: - light charged particles - gamma-rays - neutrons - beam-like particles B. Fernández-Domínguez Instrumentation for Direct Reactions EURISOL FW5 report : INSTRUMENTATION (Appendix E): Array for light charged-particle and gamma-array measurements: GRAPA (Gamma-Ray And Particle Array) Updated version: http://ns.ph.liv.ac.uk/eurisol/spec_expts/M2.1_apparatus.pdf • Charged Particles: (Particle Array ) Solid-angle of 4 x~0.1,0.5 mm and θ~ 1-5 mrad Large dynamic range with PID to Z=10 • Gamma and fast charged particles : (Gamma Array) Solid-angle of 4 Best efficiency and resolution Integration of cryogenic and polarised targets. B. Fernández-Domínguez Preliminary design work required - SIMULATIONS: Modelling of a number of potential key experiments proposed, study different configurations etc… - IN-BEAM TEST TO VALIDATE DESIGN CHOICES : To asses the methodology and feasibility of the design concept. SIMULATIONS: 3700 keV Key experiments: • 78Ni(d,p)79Ni @ 10 MeV/u 2004.6 keV • 132Sn(d,p)133Sn @ 10 MeV/u 1655.7 keV 1560.9 keV 853.7 keV 133Sn B. Fernández-Domínguez Preliminary design work required: SIMULATIONS Particle Array: (energy and angular resolution) Target Thickness Interaction Point Gamma Array: Scintillating material : (CsI, LaBr3) B. Fernández-Domínguez Preliminary design work required: IN-BEAM TESTS TIARA-MUST2 CAMPAIGN AT SPIRAL/GANIL September – November 2007 -Si-array ->Array of silicon detectors covering 90% of 4pi. MUST2 and TIARA -Ge-array->EXOGAM -Spectrometer ->VAMOS Large step towards an integrated particle-gamma ray array. Results can be used to validate the design choices of the new EURISOL array (d,p) with 20O and 26Ne beams at SPIRAL : Study of the N=16 shell gap 20O-> Location of the d3/2 state in Oxygen neutron rich isotopes 26Ne->Reveal isomeric f7/2 intruder that competes with sd ground state B. Fernández-Domínguez Preliminary design work required: IN-BEAM TESTS EXOGAM Gamma-ray array VAMOS spectrometer MUST2 Si-CsI GANIL radioactive beam - 20O (SPIRAL) 10.9 A MeV 104 pps TIARA silicon array Detectors E, E, TOF B, CD2 target 0.5 mg/cm2 Triple coincidences: Target-like particles – TIARA/MUST2 Beam-like particles - VAMOS Gammas - EXOGAM Trigger: hit in Si-detector B. Fernández-Domínguez TIARA: Inner and Outer Barrel +Hyball TIARA – Two Barrels: 8 detectors, x 4 longitudinal strips each. -Inner Barrel-> Energy, position. (E~ 200 keV, θ~1-2 deg) -Outer Barrel- identification. (30-140 deg) - Hyball, 6 wedges, x16 rings (radial), x 8 sectors (azimutal) (E~ 50 keV, θ~2 deg) (150-175 deg) B. Fernández-Domínguez MUST2: 4 Telescopes of Si+CsI MUST2 4 telescopes of Si-CsI placed at forward angles. (0-30 deg) Si-Strip – 4 modules x128x128 Energy, position. E~ 50 keV, θ~0.22 deg (pitch size 0.7mm at 180 mm) CsI- 4 modules with 4x4 crystals Identification E-E B. Fernández-Domínguez TIARA+MUST2 coupled to VAMOS •Identification of the recoil VAMOS: Ionisation Chamber->E Plastic ->E, TOF Drift Chambers ->X,Y,θ, B. Fernández-Domínguez TIARA+MUST2 coupled to VAMOS +EXOGAM •Gamma detection with EXOGAM 4 Clovers @ 90 deg 15% photopeak efficiency @ 1.3 MeV B. Fernández-Domínguez SPIRAL: RADIOACTIVE BEAM of 20O: d(20O,p)21O 21O + Preliminary (on-line results) E (MeV) (d,p) BOUND STATES g.s 1st 1.28 MeV E (MeV) θ (degrees) SIMULATION Geant4 g.s θ (degrees) B. Fernández-Domínguez SPIRAL: RADIOACTIVE BEAM of 20O: d(20O,p)21O 20O + n E (MeV) Preliminary (on-line results) (d,p) UNBOUND STATES E (MeV) θ (degrees) E (keV) SIMULATION Geant4 θ (degrees) B. Fernández-Domínguez SUMMARY Simulations reproduce response of arrays and give insight into the main parameters that contribute to performance Online analysis of the experiment confirms we can study different reactions channels, obtain level energies and l-values information • transfer to bound and unbound states with full channel identification • triple coincidences with excellent gamma energy resolution • also have (d,d’) and (d,t) acquired simultaneously with TIARA and MUST2 • to include unbound states requires the large VAMOS angle/momentum bite • type of experiments will be important to learn for the future array. The feasibility of the methodology is demonstrated. FUTURE Increase efficiency of particle-gamma coincidences.. Gamma detection better efficiency, allow for fast-particle detection simultaneously Improve performance of particle array. (Energy resolution, low thresholds) Possibility to introduce cryogenic or polarised targets No part of the talk end PARTICLE ARRAY: Simple Geometry INPUT: Y Distance to (0,0,0) = 5 cm Box of 4 Silicon detectors : Z Area =10*10 cm2 Detector Thickness =300um Source of protons with kinematics from reaction placed at (0,0,0) No target X Energy Resolution STUDY of the θ and Ex Strip pitch size Thickness detector (punch through) Target thickness effect PARTICLE ARRAY: INTERACTION POINT Assuming reaction can take place at any Z < Target Thickness X and Y are defined by the beam spot size 1 mg/cm2 1 mg/cm2 +inter point PARTICLE ARRAY: RANDOM INTERACTION POINT 3700 keV 2004.6 keV 1655.7 keV 1560.9 keV 853.7 keV 133Sn E (keV) FWHM FWHM FWHM gs 174 keV 203 keV 362 keV 1560.9 181 keV 221 keV 406.5 keV 1561+1655 224 keV 280 keV 778 keV 2004.6 208 keV 315 keV ----- 3700 217 keV 418 keV 945 keV The main source comes from the uncertainty on the z-coordinate Beam spot size negligeable EXPERIMENTAL DATA: 132Sn(d,p)133Sn at Oak Ridge Courtesy K. JONES preliminary 160 um/cm2 target of CD2 at 4.7 MeV/u Data will be an input for the event-generator ->Realistic implementation of the cross sections GAMMA ARRAY: RESOLUTION: DOPPLER BROADENING E lab = f(θ,) -> E/E dop ~ f(θ) E/E (%) E Elab (1 cos ) E/E ~ 0.5 % E=1MeV -> 5 keV θ~ 2o D=8 cm Crystal Size θ 2.8 mm 2o Θlab(degrees) 3mm for a detector size of 12cm ->40x40 =1600 ch detector 6 detectors ->6x 1600=9600 channels GAMMA ARRAY: RESOLUTION: INTRINSIC E/E int ~ 2.35 A εscint g(material) Eγ εph. Eγ Eo E/E int ~ 13.4 % at 662 keV ~ 90keV Other materials: LaBr3(Ce),LaCl2 F. Notaristefani NIM A480 (2002) 423-430 To be studied 2.1 TRANSFER 24Ne(d,p)25Ne : Systematics of the 3/2+ in the N=15 isotones + 23O excitation energy (MeV) 4.5 25Ne 27Mg 4.0 1f7/2 3.5 • 23O from USD shell model and M.Stanoiu et al., PRC 69 (2004) 034312. • 25Ne preliminary result. 3.0 2.5 2.0 1.5 1d5/2 1.0 1d3/2 0.5 2s1/2 0.0 6 8 10 12 atomic number The energy of the 1d3/2 neutron orbital rises when protons are removed from its spin-orbit partner, the 1d5/2 orbital.