Perspectives of Japan

Download Report

Transcript Perspectives of Japan

Folds and folding

Outline

Terms For Describing Folds

Fold systems

Fold geometries

Mechanics of folding

Kimematic models of folding

Initial Layer Cake

Convexity and Age of Beds

• Anticline - a fold that is convex in the direction of youngest beds • Syncline - a fold that is convex in the direction of oldest beds

Direction of Fold Closing

inflection point inflection point - change in curvature (i.e., concave to convex)

Folds - Definitions

Antiforms

are anticline-shaped folds (

convex-down

) whose stratigraphic order has not been determined.

Synforms

are syncline-shaped folds (

convex-up

) whose stratigraphic order has not been determined.

• We apply these terms to any fold in which

facing direction

and/or

stratigraphic order is unknown or uncertain

.

•Determining stratigraphic succession - which way is up!

Folds - Definitions

• Overturned folds are those who have a limb that us technically upside down, it has rotated beyond vertical - dipping past 90 ° .

Folds - Geometric Properties

• The most basic element of a fold is the

folded surface

• We usually describe folds in

normal profile view

by looking

down the fold axis or down plunge

.

as seen

Folds - Geometric Properties

• In normal profile view, folded surfaces can be divided up into

limbs

and

hinges

.

• If the hinge is sharp, that point is called the

hinge point

otherwise it is called a

hinge zone

.

• Fold limbs commonly curve, and the location where segments of opposite convexity join is called the

inflection point

. It is the place where the fold is setting up for the next hinge.

Folds - Geometric Properties

• The hinge line of a fold is defined by successively connecting the

hinge points

along the

strike length

of the fold.

• The orientation of the hinge line is recorded as a lineation (plunge & trend). Hinge lines are typically not straight and their orientations can vary considerably.

Take hinge points along a single folded surface, taken together define a

hinge line

The orientation of a folded surface can be defined by the orientation of a hinge line, using plunge & trend.

Hinge line

inflection point inflection point - change in curvature (i.e., concave to convex)

Folds - Geometric Properties

• To establish the orientation or

attitude

of a fold, it is necessary to know its

hinge orientation and

the orientation of the

axial plane

or

axial surface

.

trend and plunge of hingeline of a fold is not uniquely define the overall oreintations of the fold of orientation of the fold

Determining the Fold Axial Surface

Determining the Fold Axial Surface

Profile Plane of a Fold

Folds - Geometric Properties

• The

axial surface

of a fold connects all the hinge points in all successive layers. •It may be planar - an

axial plane

, or a curvi-planar surface an

axial surface

.

Folds - Hinge lines & Axial Surfaces Hinge lines

are lines described by a lineation that lies on the axial surface, which is itself described by strike and dip..

Axial surface

- Surface created by the hinge lines of consecutive layers within the fold area - it may be planar or curved. Described by strike and dip

How can we measure the axial surface?

 We can measure its dip direction and the angle of dip  Strike can always be determined by remembering that strike is perpendicular to dip  How is the AP shown on a stereonet?

Interlimb Angle

Four Categories: Gentle Open Tight Isoclinal

Interlimb angle

: classifying fold shape

Angularity of Interlimb Angle

Attitude of Axial Surface

Cylindrical or Non-Cylindrical Folds

non-cylindrical fold

Fold Types: Cylindrical Folds

Cylindrical folds: Folds where the hinge line is straight.

If traced far enough, few hinge lines are ever straight, but segments of the hinge lines are straight, so this is a useful concept.

Think of plotting poles to bedding for the Mt. Baldy Lab

Stereographic Determination of Fold Orientations Cylindrical and non-cylindrical folds Poles to bedding planes are co-planar if the fold has a

cylindrical

geometry.

Stereographic Determination of Fold Orientations

 It is usually impossible to directly measure the axis and axial surface of large folds.  The trend and plunge of the hinge line (fold axis) and strike and dip of the axial surface can be calculated using a stereonet. An axial surface, by definition, passes through the hinge line of successive folded surfaces within a fold. The point representing the trend and plunge of the hinge line lies on a great circle that describes the orientation of the axial surface (great circle).

By definition, the fold axis (hinge line) lies upon the axial plane, which bisects the fold limbs.

Stereographic Determination of Fold Orientations How to determine a fold axis and axial surface of a large fold in the field Two methods are: 1) Beta diagrams:  -diagrams 2) Pi diagrams:  -diagrams

Stereographic Determination of Fold Orientations   Beta diagrams: 

-diagrams

Intersection shows the trend and plunge of fold axis.

The intersection of two bedding planes (e.g., great circles) represents a close approximation to trend and plunge of the hinge line. The intersection of the great circles is labeled beta (  ).

This is called a beta (  ) diagram.

Stereographic Determination of Fold Orientations  Pi diagrams:  diagrams Another way to calculate the orientation of a fold.

 plots uses at least 2 poles to bedding, results in the orientation of the fold axis.

 uses multiple poles to bedding, fits a best-fit great circle to those poles, and also results in the orientation of the fold axis.

Stereographic Determination of Fold Orientations   Pi diagrams:  diagrams Pole to pi great circle shows the orientation of the fold axis  plots uses at least 2 poles to bedding, results in the orientation of the fold axis.

 uses multiple poles to bedding, fits a best-fit great circle to those poles, and also results in the orientation of the fold axis.

The angle between limb 1 and limb 2 and the axial plane are the same - a bisector!

Bisecting surface:

Simple view in stereographic method that the bisecting surface approximates the axial surface.

 The bisecting surface and the axial surface do not always coincide.

 The axial surface connects individual hinge lines

Determining the orientation of the

bisecting

surface of a fold.

1) 2) 3) 4) Construct beta diagram Plot poles to the fold limbs Measure angle between the poles. Fit a great circle to the bisector and 

Determining the orientation of the

bisecting

surface of a fold Stereographic view of bisecting surface in proper orientation.

Stratigraphic Facing

Fold Symmetry and fold vergence

Fold Harmonics

Parasitic Folds

Parasitic folds always verge towards anticlines and away from synclines

Parasitic Folds

Parasitic folds verge towards anticlines and away from synclines

Parasitic folds verge towards anticlines and away from synclines

Vergence

The direction in which the next antiform can be found .

Vergence occurs in the direction in which thrusting took place.

Vergence

Vergence

Parasitic folds

Gives us information about sense of shear on the fold limbs as well as the location of larger-scale fold hinges.. Think of

S

and

Z

folds, their asymmetry will give a sense of rotation, when viewed down plunge.

Vergence

Small scale folds define fold shape

Vergence

Which cross-section is correct?

Identify major isoclinal fold: antiform or synform? Use asymmetry of the folds suggests flexural slip on the limbs of an overturned synform.

Expected layer parallel slip (flexural slip) indicates sense of shear.

Flexural slip folding (buckling) transforms symmetrical folds into asymmetrical folds

Vergence

Which cross-section is correct?

Identify major isoclinal fold: antiform or synform?

References

Most figures from:

http://earth.leeds.ac.uk/folds/describing/folddesc.htm