WP00-AQUA-CSP-Introduction-Final-01

Download Report

Transcript WP00-AQUA-CSP-Introduction-Final-01

AQUA-CSP
Concentrating Solar Power
for Sea Water Desalination
AQUA-CSP
Franz Trieb
German Aerospace Center (DLR)
12.11.2007
AQUA-CSP
Partners
German Aerospace Center (Germany)
Dr. Franz Trieb, Dipl. Geo. Julia Gehrung, Dr. Peter Viebahn, Dr. Christoph Schillings, Dipl. Phys. Carsten Hoyer
National Energy Research Center (Jordan)
Eng. Malek Kabariti, Waled Shahin, Ammar Al-Taher
University of Aden, (Yemen)
Prof. Dr. Hussein Altowaie
University of Sana’a, (Yemen)
Prof. Dr. Towfik Sufian
University of Bahrain, (Bahrain)
Prof. Dr. Waheeb Alnaser
Prof. Dr. Abdelaziz Bennouna, formerly at CNR (Morocco)
Intern. Forschungszentrum für Erneuerbare Energien e.V. (Germany)
Dr. Nasir El-Bassam
Kernenergien – The Solar Power Company (Germany)
Dipl.-Ing. Jürgen Kern
Nokraschy Engineering GmbH (Germany)
Dr.-Ing. Hani El-Nokraschy
Deutsche Gesellschaft Club of Rome (Germany)
Dr. Gerhard Knies, Dr. Uwe Möller
House of Water and Environment (Palestine)
Dr. Amjad Aliewi, Hafez Shaheen
Center for Solar Energy Studies (Libya)
Dr. Ibrahim Elhasairi
Centre de Developpement des Energies Renouvelables (Morocco)
Mme. Amal Haddouche (Director General)
University of Bremen (Germany)
Dr. Heike Glade
AQUA-CSP
Task
Assessment of the Potential of Concentrating
Solar Power (CSP) for Seawater Desalination for
the Urban Centres in 20 Countries of the Middle
East and North Africa.
AQUA-CSP
Work Packages:
1. Technologies (combination of CSP and desalting technologies)
2. Water Resources and Solar Energy Resources
3. Demand Side Scenario
4. Market Potential 2000-2050
5. Socio-Economic Impacts
6. Environmental Impacts
7. Literature
 Final Report a la MED-CSP and TRANS-CSP by end 2007
WP 1: Technologies
Reference Plant Definition
AQUA-CSP
Heat Only
Solar Field
Storage
Solar Field
solar
heat
solar
heat
Combined Heat & Power
Power Only
grid
Storage
Solar Field
solar
heat
fuel
fuel
Power
Plant
Power
Plant
fuel
Storage
heat
MED
MED
RO
Water
Power
Water
MED: Multi-Effect-Distillation
RO: Reverse Osmosis Membrane Desalination
Power
Water
Power
AQUA-CSP
WP 1: Technologies
Conclusions
 Base load capability makes CSP best suited renewable source for large scale
desalination
 MSF is the less efficient desalination technology with high energy demand
 CSP/MED and CSP/RO have similar technical and economic performance, no
preference for either one can be seen without detailed site assessment
 Linear Fresnel collector fields are particularly well suited for seawater
desalination
 Present cost of CSP desalination between 1 - 2 €/m³
 Medium term cost of 0.2 - 0.3 €/m³ is achievable in combination with power
generation and using solar energy storage
 CSP technology is ready for the seawater desalination market
WP 2: Resources
Exploitable Natural Water
AQUA-CSP
Renewable and
Exploitable Water
in MENA
Internal
Total
Total
Internal
Renewable
Overlap:
Renewable
Renewable
Renewable
Surface
Surface and
Water
Total
Water
Groundwater
Water
Groundwater
(actual)
Population in
(actual)
(km³/y)
(km³/y)
(km³/y)
(km³/y)
2000 (million) (m³/cap/y)
Dependency
Ratio (%)
Exploitable
Water
(km³/y)
0
3
9
0
97
20.0
7.9
3.6
0.6
49.7
--
81.8
Morocco
Algeria
Tunisia
Libyan Arab Jamahirija
Egypt
North Africa
10.0
1.4
1.5
0.5
1.3
22.0
9.8
3.1
0.2
0.5
3.0
0.0
0.4
0.1
0.0
29.0
11.6
4.6
0.6
58.3
29.2
30.5
9.6
5.3
67.3
14.7
35.6
3.5
104.1
141.9
993
380
475
113
866
733
Israel
Palestine
Jordan
Lebanon
Syrian Arab Republic
Iran, Islamic Rep. of
Iraq
Western Asia
0.5
0.1
0.5
3.2
4.2
49.3
1.2
59.0
0.3
0.0
0.4
4.1
4.8
97.3
34.0
140.9
0.0
0.0
0.2
2.5
2.0
18.1
0.0
22.8
1.7
0.1
0.9
4.4
26.3
137.5
75.4
246.2
6.1
3.2
5.0
3.4
16.8
66.4
25.1
126.0
274
19
176
1297
1563
2071
3005
1954
55
18
23
1
80
7
53
--
1.64
0.06
0.88
2.19
20.6
137.51
75.42
238.3
Oman
Kuwait
Qatar
Saudi Arabia
United Arab Emirates
Yemen
Bahrain
Arabian Peninsula
1.0
0.0
0.1
2.2
0.1
1.5
0.0
4.8
0.9
0.0
0.0
2.2
0.2
4.0
0.0
7.3
0.9
0.0
0.0
2.0
0.1
1.4
0.0
4.4
1.0
0.0
0.1
2.4
0.2
4.1
0.1
7.8
2.4
2.2
0.6
21.5
3.2
17.9
0.7
48.5
413
9
83
112
47
229
171
161
0
100
4
0
0
0
97
--
0.99
0.02
0.05
2.4
0.15
4.1
0.12
7.83
78.4
183.7
30.7
358.1
316.4
1132
--
328.0
Total MENA
AQUA-CSP
WP 2: Resources
Conclusions
 Water poverty (< 1000 m³(cap/y) in all except 4 MENA countries
 Exploitable natural water 328 Bm³/y
 Plenty fossil groundwater but only small part exploitable
 Huge solar energy resource available in all MENA countries
 CSP-Potential for non-conventional water from seawater desalination available
WP 3: Freshwater Demand
Water Demand Prospects by Country
AQUA-CSP
Freshwater Demand [billion m³/y]
500
450
400
350
300
250
200
150
100
50
0
2000
2010
2020
2030
Year
2040
2050
Bahrain
Yemen
UAE
Saudi Arabia
Qatar
Kuwait
Oman
Iran
Iraq
Syria
Lebanon
Jordan
Israel
Palestine
Egypt
Libya
Tunisia
Algeria
Morocco
AQUA-CSP
WP 3: Freshwater Demand
Conclusions
 MENA population will double by 2050
 MENA economies will approximate European level by 2050
 Water demand would grow from 270 Bm³/y in 2000 to 460 Bm³/y in 2050
 Water deficit would increase from 50 Bm³/y in 2000 to 150 Bm³/y in 2050
 Over-use of groundwater is already above 45 Bm³/y
 Extreme efficiency could limit deficit to 100 Bm³/y
 Efficiency and new sources will be required to cover water deficits
WP 4: CSP Markets
Middle East & North Africa
AQUA-CSP
Middle East & North Africa
Water Consumption [Bm³/y]
600
500
400
300
200
100
0
2000
2005
2010
2015
Natural Water Used
Groundwater Over-Use
2020
2025
2030
Wastewater reused
CSP Desalination
2035
2040
2045
2050
Fossil Fuel Desalination
Efficiency Gains
AQUA-CSP
WP 4: CSP Markets
Conclusions
 Sustainable supply must be initiated immediately to avoid groundwater collapse
 Increase efficiency of water production, distribution, end-use and management
 Increase re-use of waste water
 Start introduction and dissemination of CSP-desalination plants
 Over-use of groundwater will increase still from 45 Bm³/y to 70 Bm³/y in 2020
 Conventional desalination will grow by a factor of 5
 All measures should be taken to avoid groundwater collapse, but CSP is the
key to sustainability
WP 5: Socio-Economic Impacts
CSP Learning Curves
AQUA-CSP
@ 5 ct/kWh electricity cost
2.5
2.0
1.5
1.0
0.5
0.0
2000
2010
2020
2030
2040
Year
0 % Interest Rate
5 % Interest Rate
2050
0.16
2060
0.14
10 % Interest Rate
0.12
Electricity Cost in €/kWh
Cost of Water in €/m³
3.0
0.10
0.08
0.06
0.04
0.02
0.00
2000
2010
2020
2030
2040
2050
Year
@ 0.5 €/m³ water cost
0 % Interest Rate
5 % Interest Rate
10 % Interest Rate
2060
AQUA-CSP
WP 5: Socio-Economic Impacts
Conclusions
 Cost perspective of CSP desalination is affordable (< 0.4 €/m³), while that of
conventional desalination is not
 Efficiency enhancement and desalination are less expensive than not acting
 „Solar“ water can avoid dependency on „virtual“ water
 CSP desalination can create arable land for rural and urban development
 CSP desalination is a totally over-looked solution to the MENA water crisis
WP 6: Environmental Impacts
Impact on Global Warming
AQUA-CSP
Relative GHG Emissions
600%
500%
400%
300%
200%
100%
0%
Conv. MSF
Conv. MED
Conv. RO
Best RO
Technology
CSP/MED
CSP/RO
AQUA-CSP
WP 6: Environmental Impacts
Conclusions
 Large scale conventional seawater desalination would create significant
environmental impacts
 CSP can reduce energy related emissions to few percent
 Beachwell or horizontal drain intake and nano-filtration can reduce additives
 Horizontal drain intake can reduce impingement and entrainment and
horizontal drain discharge can avoid concentration of heat and salt
 Advanced CSP seawater desalination can be compatible with the
environment