Transcript Document
G. Kioseoglou SEMICONDUCTOR SPINTRONICS Spin as new degree of freedom in quantum device structures George Kioseoglou Materials Science and Technology, University of Crete Research Activities Essential Requirements for Spintronics Devices • • • • G. Kioseoglou Efficient electrical injection Efficient spin transport Control of spin carriers Effective detection Research activities are focused on electrical spin injection and detection of spin polarized electrons into semiconductors. magnetic contacts • ZnMnSe • Fe • FeGa • MnGa semiconductors tunnel barriers • GaAs QWs • Shottky • Si • Al2O3 • InGaAs • MgO • Quantum Dots Growth and characterization • MBE growth (NRL) • Comprehensive characterization • magnetic (SQUID, FMR) • transport (Hall, etc) • structural (TEM, x-ray diff) • composition (XRF) • magneto-optical • Theory and modeling MBE MBE G. Kioseoglou DMS as a spin contact :ZnMnSe G. Kioseoglou n-ZnMnSe/AlGaAs/GaAs/AlGaAs • spin-polarized electron injection • giant Zeeman splitting ∆E=gBH 80 Optical Polarization (%) ge ~ 30; spin splittings >> kT • 100% spin polarized optical polarization ZnMnSe GaAs Pspin = Pcirc (QWs) Pspin = 2 Pcirc (bulk) Pcirc = I(+) - I(-) I(+) + I(-) Pspin= 60 T=4.5K 40 20 I=300A , V=2.7V 0 0 2 4 6 Magnetic Field (T) 8 n - n n + n PRB62, 8180 (2000) APL79, 3098 (2001) Fe based GaAs Spin-LEDs B B0zˆ 40 T=5 K n-AlGaAs i-GaAs p-AlGaAs 30 20 10 0 -10 -20 Fe out of plane -30 -40 -4 -2 0 2 4 Magnetic Field (T) metal Fe AlGaAs + Fe semicond - Optical Polarization (%) + G. Kioseoglou APL80, 1240 (2002) APL82, 4092 (2003) APL84, 4334 (2004) Spin injection from FeGa and MnGa into GaAs FeGa/Al2O3/GaAs MnGa/Al2O3/GaAs 50 30 Circular Polarization (%) Electron spin polarization (%) 30 EL data SQUID at T=20K 40 20 10 T=20K 0 -10 -20 I=4.2mA V=2.3 V -30 20 10 0 -10 EL data PL data MnAs:out of plane magnetization -20 -40 -50 -30 -3 -2 -1 0 G. Kioseoglou 1 2 3 -4 -3 -2 -1 0 1 2 Magnetic Field (T) Magnetic Field (T) APL91, 122515 (2007) APL97, 041103 (2010) 3 4 Silicon Spintronics Si / Si-Ge $ 120 Billion - extensive technology - extensive infrastructure Si is an ideal host for SpinS Low spin-orbit scattering is basic material property - low atomic mass - crystal inversion symmetry - low nuclear hyperfine interaction G. Kioseoglou Electrical Spin Injection from Fe/Al2O3 & Fe/SiO2 into Si Al2O3 10 nm Fe T=5K 2mA, 2.6V EL Intensity (arb. units) + - B B0 zˆ 3T 0.95 C.H. Li et al, APL95, 172101 (2009) 2TO 1 1.05 1.1 Photon Energy (eV) 4 T=5K Circular Polarization (%) 150 nm p-Si G. Kioseoglou et al, APL94, 122106 (2009) TA 0T 70 nm i-Si B.T. Jonker and G. Kioseoglou Nat. Phys. 3, 542 (2007) TO 70 nm n-Si p-Si(001) substrate G. Kioseoglou TA 3 I=10mA, V=2.1V TO 2 1 0 P(TA) = 1.7 P(TO) -1 non-magnetic -2 -3 Fe magnetization -4 -6 -4 -2 0 2 Magnetic Field (T) 4 6 Quantifying electron spin polarization from EL G2' G8G6- G15 ^ T G25' ^1 T G+8 D G7+ so ^ L D1 2 D5 indirect gap - the spin pol depends direct gap Optical polarization G. Kioseoglou Electron spin polarization strongly on the phonon branch that mediates the opt transition Huge theoretical effort to understand spin orientation in Si p-type THEORY : P(TA) = 1.6 P(TO) 13% Experiment:P_TAsub=3.5% Spin injection efficiency 27% Pengke Li and Hanan Dery, PRL105, 037204 (2010) Fe based InAs QD Spin-LEDs e AlGaAs GaAs (n) QW(i) G. Kioseoglou AlGaAs (p) Fe GaAs (p) QD Optical Polarization (%) 6 h 120 K 200 K 300 K 4 GaAs Fe out of plane magnetization 2 InAs 0 GaAs -2 -4 1 nm • electrical spin injection up to RT • DP mechanism is suppressed -6 -8 -6 -4 -2 0 2 4 Magnetic Field (T) 6 8 G. Kioseoglou reduced density increased uniformity in size 3mA, 2.6V T=5K B=0T EL Intensity (arb. units) EL Intensity (arb. units) reduced growth rate 58 meV 0.3mA, 1.6V T=5K B=0T 32 meV 1150 1200 1250 Energy (meV) 1120 1160 1200 1240 1280 Energy (meV) 1320 1300 1350 Filling of the electronic shell-states G. Kioseoglou Continuous evolution of shell intensity with bias Low bias 1450 WL Energy (meV) 1400 1350 d 1300 p 1250 T=5K B=0T WL 1400 f 1350 d 1300 p 1250 s 1200 s 1200 1.70 1.72 1.74 1.76 1.78 1.80 1.82 1.84 1.86 Bias (V) 1.8 2.0 2.2 2.4 2.6 2.8 Bias (V) G. Kioseoglou et al, PRL 101, 227203 (2008) 3.0 Intensity T=5K B=0T Energy (meV) 1450 High bias 3.630E4 3.604E4 3.578E4 3.552E4 3.526E4 3.500E4 3.474E4 3.448E4 3.423E4 3.397E4 3.371E4 3.345E4 3.319E4 3.293E4 3.267E4 3.241E4 3.215E4 3.189E4 3.163E4 3.137E4 3.111E4 3.085E4 3.060E4 3.034E4 3.008E4 2.982E4 2.956E4 2.930E4 2.904E4 2.878E4 2.852E4 2.826E4 2.800E4 2.774E4 2.748E4 2.722E4 2.697E4 2.671E4 2.645E4 2.619E4 2.593E4 2.567E4 2.541E4 2.515E4 2.489E4 2.463E4 2.437E4 2.411E4 2.385E4 2.359E4 2.334E4 2.308E4 2.282E4 2.256E4 2.230E4 2.204E4 2.178E4 2.152E4 2.126E4 2.100E4 2.074E4 2.048E4 2.022E4 1.996E4 1.971E4 1.945E4 1.919E4 1.893E4 1.867E4 1.841E4 1.815E4 1.789E4 1.763E4 1.737E4 1.711E4 1.685E4 1.659E4 1.633E4 1.608E4 1.582E4 1.556E4 1.530E4 1.504E4 1.478E4 1.452E4 1.426E4 1.400E4 1.374E4 1.348E4 1.322E4 1.296E4 1.270E4 1.245E4 1.219E4 1.193E4 1.167E4 1.141E4 1.115E4 1.089E4 1.063E4 1.037E4 1.011E4 9853 9594 9334 9075 8816 8556 8297 8038 7779 7519 7260 7001 6741 6482 6223 5964 5704 5445 5186 4926 4667 4408 4149 3889 3630 3371 3111 2852 2593 2334 2074 1815 1556 1296 1037 777.9 518.6 259.3 0 Another approach: P vs E C E 8 4 B A 2 0 -2 p-shell s-shell d-shell 1200 1240 1280 1320 1360 Polarization (%) EL Intensity (arb. u.) 6 Circular Polarization (%) D 30mA, 3.0 V T= 5K 30mA,3V 8 E 6 D 4 C G. Kioseoglou Polarization exhibits maxima shifted with respect to intensity shell-peaks due to intershell exchange energy 2 B 0 -4 -6 -2 0 1 2 3 4 5 6 Magnetic Field (T) Energy (meV) • first measurement of the s-p and p-d intershell exchange energies • a significant step towards understanding spin-polarized carriers in QDs Vxsp=7±2 meV Vxsp=13.5±1 meV G. Kioseoglou et al, PRL 101, 227203 (2008) IMPACT G. Kioseoglou 500 450 400 ZnMnSe/GaAs PRB62, 8180 (2000) Fe/GaAs APL80, 1240 (2002) APL82, 4092 (2003) CITATIONS 350 300 250 200 Fe/Si Nat Physics3, 542 (2007) 150 100 50 0 2000 2002 2004 2006 2008 Collaborations Dr. Jonker (NRL) Dr. Goswami (NRL)-microscopy Prof. Petrou (SUNY Buffalo) THEORY Prof. Hanan Dery University of Rochester, NY Dr. Pawel Hawrylak Quantum Theory Group, Institute for Microstructural Sciences, Ottawa G. Kioseoglou G. Kioseoglou Theory: 2 e-h pairs/QD – Sz=-1 G. Kioseoglou Initial state Ein Es Esp V sp ee s-shell exciton Final state s-shell hole + p-shell elec s-p exchange between spin polarized electrons E f E sp σ+ The outgoing photon carries the initial-state exchange energy of the spin-polarized electrons G. Kioseoglou B B0zˆ + - + Fe n-AlGaAs i-GaAs p-AlGaAs 100 mm