Transcript mottfet
ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 Mott FET A. Sawa1,2 S. Asanuma,1,2 P.-H. Xiang,1,2 I. H. Inoue,1,2 H. Yamada,1 H. Sato,1,2 and H. Akoh1,2 1National Institute of Advanced Industrial Science and Technology (AIST) 2JST-CREST Outline ・Correlated electron system ・Mott metal-insulator transition ・Mott field effect transistor Feature/potential Issues/challenges ・Experiments Mn-oxides Ni-oxides V-oxides ・Summary Correlated electron system Band insulator Mott insulator electron orbital t electron Pauli’s rule No more than 2 electrons in an orbital E One electron in an orbital due to on-site Coulomb repulsion (U > t) t: Transfer U: Coulomb E EF E EF upper Hubbard band (UHB) U EF lower Hubbard band (LHB) Mott insulator-metal transition Mott insulator Electron solid electron Resistivity [cm] 104 Electron liquid x=0 0 Mott transition Huge resistance change (t < U) W Ce MnO 3 CarrierCa doping, 1-x x magnetic field, light, ・・・ 102 W < U10 Decrease in U (band gap) 10-2 E Correlated-electron metal W>U (t > U) x=0.02 E W: band width x=0.03 U: Coulomb energy U 10-4 EF 0 t 100W ∝ 200 300 t Temperature [K] Y. Tomioka, unpublished W U EF Electronic phases T T Critical point Antiferromagnetic insulator Antiferromagnetic insulator Ferromagnetic metal Carrier density Carrier density Quantum CP Optical property (La,Sr)MnO3 insulator metal 250 ab (cm) Magnetizum Paramagnetic metal Superconductivity 200 150 100 La2-xBaxCuO4 x=0.09 9T 50 0 0 0T 20 40 T (K) Changes in electronic, magnetic, and optical properties 60 Mott FET Mott FET Mott FET can control electronic, magnetic, and optical properties by electric field Gate Drain Source Correlated-electron material “ON” “ON” “electronic” “ON” “OFF” “magnetic” “optical” Mott transition/transistor‐Scaling?‐ Electron solid Insulator Electron liquid Mott transition OFF Metal ON In principle, a nanometer-scale Mott insulator shows the Mott transition 103 electrons Number of electrons 4 nm No one has demonstrated Mott transition/transistor‐Nonvolatile?‐ First order phase transition Hysteretic behavior Nonvolatile(?) Kotliar et.al PRL 89, 046401 (2002). V>0 electrode doped-Mott ins. V<0 Oka, Nagaosa, PRL95, 266403 (2005) No one has demonstrated Mott transition/transistor‐Fast switching?‐ Ultrafast optical pump‐probe spectroscopy Sample: Gd0.55Sr0.45MnO3 Reflectcance Electronic state Karr rotation Magnetic state Matsubara et al., PRL99, 207401 (2007) Mott transition takes place within a few picoseconds Challenges conventional gate dielectric (SiO2): ~1013/cm2 Ahn, Triscone, Mannhart, Nature 424, 1015 (2003). 1013 1015 1014 – 1015 cm-2 For the realization of a practical Mott transistor, • Correlated-electron materials with a MI transition attainable at significantly lower carrier concentrations • High-k gate materials with a large breakdown strength Electric double layer transistor Electric double layer transistor Electrolyte/ionic liquid is used as gate dielectrics Outer Helmholtz plane S. Ono et al., APL 94, 063301 (2009) Large capacitance: > 10 F/cm2 J. T. Ye et al., Nature Mater. 9, 125 (2010) a large amount of carriers: 1014 – 1015 cm-2(@2V) Electric double layer transistor (EDLT) VD VG IG ID Ionic Liquid SepaD + + + + S rator − − − − − − − − G CMO YAO substrate + DEME+ cation − TFSI- anion CMO channel Thickness: ~ 30 nm W/L: ~ 10μm/100μm S. Asamuna, AS et al., Appl. Phys. Lett. 97, 142110 (2010) P-.H. Xiang, AS et al., Adv. Mater. 23, 5822 (2011) 10F/cm2@10-3Hz →1.5 × 1014 /cm2@VG= 2.5 V EDLT consisting of compressively strained CaMnO3 film 0.25 ID (A) 0.20 0.15 0.10 Insulator 0.05 IG (nA) Metal 0.00 0.1 0.0 -0.1 -2 Thickness of channel : 40nm On/Off ratio: >10 @RT >103 @50K -1 0 1 2 VG (V) Nonvolatile change in resistance at “room temperature” P-.H. Xiang, AS et al., Adv. Mater. 23, 5822 (2011) non-doped (VG = 0) carrier doped (VG ≠ 0) Temperature ·CMR-manganite, High TC cuprate ·1014~ 1015/cm2 carriers Sheet Resistance (logarithmic scale) Sheet Resistance New approach for Mott transistor TMI Temperature “sharp” and “large” resistance change (Nd,Sm)NiO3 TMI = 200–400 K VO2 TMI = 300–340 K NdNiO3 EDLT S. Asamuna, AS et al., Appl. Phys. Lett. 97, 142110 (2010) R. Scherwitzl et al., Adv. Mater. 22, 5517 (2010). Nd0.5Sm0.5NiO3 EDLT NSNO(0.5)/NdGaO3 (110) (Thickness:~6 nm) (Nd,Sm)NiO3 channel VG 0V -2.3V -2.5V 10-3 @300 K 10-5 10-6 10-7 ISD (A) Resistivity(cm) 10-2 Temperature (ºC) -33 -13 7 27 10-8 10-9 10-10 10-11 10-4 220 240 260 280 300 320 Temperature (K) 10-12 -3 -2 -1 0 1 VG(V) 2 3 Large resistance change (~105) at room temperature S. Asamuna, AS et al., unpublished VO2 EDLT Nonvolatile ¥ Gate voltage VO2 insulator metal Nakano et al., Nature 487, 459 (2012) Oxide FET Channel Operation On/Off temperature ratio SrTiO3 SrTiO3 R. T. ~105 Mobility Gate voltage (cm2/Vs) (V) Gate material 2.5 ~10 superconductivity: TC ~0.3K at VG=-3V References a-CaHfO3 JJAP46, L515 (2007) electrolyte Nat. Mater. 7, 855 (2008) a-Al2O3 APL84, 3726 (2004) KTaO3 R. T. ~104 0.4 100 TiO2 (anatase) R. T. ~105 0.37 5 a-LaAlO3/MgO APL92, 132107 (2008) In-Ga-Zn-O R. T. ~108 12 5-6 a-Y2O3 APL89, 112123 (2006) Mott FET PZT (ferroelectrics)Science 284, 1152 (1999) GdBa2Cu3O7 50-300K <3 ±3 La2CuO4 R. T.(?) <10 <8 SrTiO3 (La,Sr)MnO3 10-300K <3 ±1 PZT (La,Ca)MnO3 100-200K <10 ±3 Ionic liquid 77K R. T. 50K R. T. ~100K <10 <1 >103 ~10 >10 ±10 PZT ±2.5 Ionic liquid R. T. ~105 ±2.5 Ionic liquid unpublished 260K ~103 ±3 Ionic liquid Nature 487, 459 (2012) SrRu1-xTixO3 CaMnO3 NdNiO3 (Nd,Sm)NiO3 VO2 ±2 APL76, 3632 (2000) PRB74, 174406 (2006) PRL102, 136402 (2009) APL82, 4770 (2003) Ionic liquid Adv. Mater. 23, 5822 (2011) APL97,142110 (2010) Summary Feature/potential of Mott FET • Functionality: electronic, magnetic, and optical switches • Scaling limit: < 10 nm • Nonvolatile and fast switching expected from theoretical and experimental studies on correlated electron materials Bottleneck/challenge A large number of carriers (>1014 cm-2 ) is necessary to be doped in order to induce the Mott transition For the realization of a practical Mott transistor • (“solid”) Higk-k gate materials with a large breakdown strength