Transcript Document
Full first-principles simulations on 180º stripe domains in realistic ferroelectric capacitors Pablo Aguado-Puente Javier Junquera Technological applications: ABO3 perovskites oxides, promising candidates for NV-FRAM perovskite oxide (PZT,BST) metal (SrTiO3-Nb, SrRuO3,Pt) The use as a NV-FRAM depends on the existence of a polar ground state … … is there a fundamental limit? Fundamental motivation: what’s the most stable phase for epitaxial ferroelectric ultrathin films? • Long time question. 1 1970 1975 1980 1985 1990 1995 2000 Year of Publication ? Streiffer (PTO) Streiffer (PTO) Pertsev (PTO) Tybell (PZT) Marayuma (PZT) Ghosez and Rabe (PTO) 2 Bune et al. (PVDF) Yanase (PZT) Yoneda (BTO) Li (BTO) Symetrix (PZT) J. Scott (PZT) 10 Sayer (PZT) 100 Li et al. (PZT) 6 4 Batra and Silverman (TGS) Thickness Limit (nm) Courtesy of H. Kohlstedt (nm) 8 Karasawa (PTO) 10 Junquera and Ghosez (BTO) •Hot field. 0 1996 1997 1998 1999 2000 2001 2002 2003 PTO: PbTiO3 PZT: Pb(Zr,Ti)O3 BTO: BaTiO3 TGS: tryglycine sulphate PVDF: Ferroelectric polymer Ph. Ghosez and J. Junquera, First-Principles Modeling of Ferroelectric Oxide Nanostructures, Handbook of Theoretical and Computational Nanotechnology, Vol. 9, Chap. 13, 623-728 (2006) (http://xxx.lanl.gov/pdf/cond-mat/0605299) and references therein. Experimentally: small changes in boundary conditions, great changes in ground state a d d PbTiO3 PbTiO3 SrTiO3 Nb-SrTiO3 (insulator) (metal) D. D. Fong et al. (2004) S. K. Streiffer et al. (2002) C. Lichtensteiger et al. (2005) A. T. J. van Helvoort et al. (2005) SrRuO3 d PbTiO3 PbZr0.2Ti0.8O3 SrTiO3 SrRuO3 (insulator) SrTiO3 D. D. Fong et al. (2005) V. Nagarajan et al. (2006) Many effects might alter the delicate balance between long and short range forces Surface Defects (vacancies, misfit dislocations…) Chemistry Finite conductivity Mechanical Experimental measures, Electrostatic global result First-principles calculations allow to isolate their respective influence Surface Defects Chemistry (vacancies, misfit dislocations…) Finite conductivity Mechanical Electrostatic Until today, monodomain studies, goal of this work: ab initio multidomain simulations real electrode ● Uniform reduction of the polarization Junquera and Ghosez, (2003) Umeno et al. (2006) bulk Ed P’ real electrode real electrode P ● Break down into domains Present work • Full first-principles simulation using • Explicitly included electrodes. real electrode Ferroelectric layer: fundamental parameters of the simulations FE layer: Nx repetitions in [100] direction and m cells in [001] direction m = layer thickness Nx = domain period • Nx from 2 to 8 cells • m from 2 to 4 cells • FE layer made of BaTiO3. • Domain wall in BaO and TiO2 Building the cell: the paraelectric unit cell • Building the reference cell following the scheme of Junquera and Ghosez (2003). Sr Short-circuit boundary conditions SrRuO3 Mirror symmetry plane BaTiO3 [001] SrRuO3 SrTiO3 [100] a = aSrTiO3 Nat = 40 atoms m = 2 unit cells Ru O Ti Ba Building the cell: replicating the paraelectric structure • Nx repetitions in [100] direction. • The energies of these cells as references. Nat = Nx · 40 atoms Building the cell: inducing a polarization by hand • Chosing a domain wall. • Inducing a polarization by hand in the FE layer displacing the atoms a percentage of the bulk soft mode. Nat = Nx · 40 atoms Relaxing all the atomic coordinates coordinates, both in the FE layer and the electrodes Forces smaller than 0.01 eV/Å No constraints impossed on the atomic positions Results: multidomain phases more stable than paraelectric structure for Nx > 4 2-unit-cells thick BaTiO3 layer 0.3 Ba-wall ( E -E para )/N x (meV) 0.2 Ti-wall 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 1 2 3 4 5 N cells x 6 7 8 9 Results: multidomain phases more stable than paraelectric structure for Nx > 4 Nx = 4 Nx = 4 0.3 Ba-wall 0.2 BaO domain walls Ti-wall 0.1 0 ( E -E para )/N x (meV) BaO domain walls -0.1 -0.2 -0.3 -0.4 -0.5 1 2 3 4 5 6 7 8 N cells x Ferromagnetic domains C. Kittel (1971) 9 Results: multidomain phases more stable than paraelectric structure for Nx > 4 Nx=4 BaO wall 2-unit-cells thick BaTiO3 layer Nx=6 BaO wall 0.3 Ba-wall Ti-wall 0.1 0 ( E -E para )/N x (meV) 0.2 TiO2 wall -0.1 -0.2 -0.3 TiO2 wall -0.4 -0.5 1 2 3 4 5 N cells x 6 7 8 9 Resulting phases show in-plane displacements and small polarization Nx = 4 BaO domain walls Small polarization inside the domains. 0.3 Sr O Ti Ba 0.1 (Bohr) Ru N =2 x bulk 0.2 capacitor 0 -0.1 -0.2 -0.3 -10 -5 0 5 10 TiO -wall distance from domain wall (Bohr) 2 About 1/10 of bulk soft-mode polarization In-plane displacements are essential to get polarization domains In-plane displacements: ON In-plane displacements: OFF 0.3 0.3 N =2 x bulk 0.1 capacitor (Bohr) (Bohr) x 0.2 0.2 0.1 N =2 bulk 0 -0.1 -0.2 -0.2 -0.3 -0.3 -5 0 5 10 TiO -wall distance from domain wall (Bohr) 2 capacitor 0 -0.1 -10 -10 -5 0 5 10 TiO -wall distance from domain wall (Bohr) 2 When in-plane coordinates are fixed, structure goes back to the paraelectric phase Changing the electrode, the ground state of PbTiO3 changes from monodomain to polydomain Lichtensteiger, et al. Lichtensteiger, Triscone, Junquera, Ghosez. Transition from vortices to standard 180º domains. 4-unit-cell thick layer, great increase in polarization m = 4, Nx = 4 TiO2 domain walls Sr 0.3 N =4 Ru x bulk 0.2 O (Bohr) 0.1 Ti 0 -0.1 Ba capacitor -0.2 -0.3 -15 -10 -5 0 5 10 15 TiO -wall distance from domain wall (Bohr) 2 (E-Epara)/Nx < -16.6 meV Displacements 10 times bigger than in the 2-cells thick layer Conclusions • There are stable multidomain phases in ultrathin FE films. 0.3 Ba-wall Ti-wall 0.1 0 ( E -E para )/N x (meV) 0.2 -0.1 0.3 -0.2 N =2 x bulk 0.2 -0.3 0.1 (Bohr) -0.4 -0.5 1 2 3 4 5 6 7 8 9 N cells capacitor 0 -0.1 x -0.2 • The chemical interaction through the interface is an essential factor since it affects the in-plane mobility of the atoms. -0.3 -10 -5 0 5 10 TiO -wall distance from domain wall (Bohr) 2 • Closure domains in FE capacitors are predicted. Slides available at: http://personales.unican.es/junqueraj Contact: [email protected] [email protected] More information … Method: Computational details First-principles calculations within Kohn-Sham Density Functional Theory (DFT) : Numerical Atomic Orbital DFT code. http://www.uam.es/siesta J. M. Soler et al., J. Phys. Condens. Matter 14, 2745 (2002) Exchange-correlation functional : LDA, fit to Ceperley-Alder data Norm conserving pseudopotentials: Ti, Sr, Ba, Ru: semicore in valence Basis set: NAO: valence: Double- + Polarization ; semicore: Single- Real-space grid cutoff : 400 Ry k-point grid : equivalent to 12x12x12 for simple cubic perovskite Supercell geometry Very small energy differences, very accurate simulations needed m=2, Nx = 4 BaO domain walls Structure Total Energy (eV) Paraelectric -138326.083054 Multidomain -138326.084463 (E-Epara)/Nx = -0.00035 eV