Transcript Document

Hygrothermal behavior of composite
laminates
• Composite materials can absorb moisture and
expand in the same way that they expand due to
temperature.
• We can use the same kind of analysis to deal with
stresses that arise from both.
• In this course we will focus on thermal behavior.
• The effect of temperatures on composite
laminates is more pronounced than on metals
because of large disparity in coefficient of
thermal expansion.
Effect of mismatch
• Graphite/epoxy typical thermal expansion coefficients are 𝛼1 =
0.02 × 10−6 ∘𝐶 , 𝛼2 = 22.5 × 10−6 ∘𝐶.
• A 200𝑜 𝐶 drop in temperature will produce a strain of -0.0045
in the transverse direction, and almost nothing in the fiber
direction.
• In a 0/90 laminate the fibers in one ply will not allow the matrix
in the other ply to shrink by more than a fraction of the -0.0045
strain.
• This will eat up a substantial part of the load carrying capacity.
• For cryogenic conditions (e.g. liquid hydrogen tanks) the
temperature drop is more than doubled, and the laminate can
fail just due to thermal loads.
• What can we do?
Thermal deformations
• If ply can expand or contract due to
hygrothermal effects, only strains, but no
stresses.
• Stress free expansion strain in a unidirectional
layer (Fig. 3.2)
Strains and stresses
• “Free” strains
1F  1 
 1 
 F  
 




T

 2   2
  2  C
 F   0 
0
12


 
 
• Hooke’s law when total strains are different
from free strains.
 1   Q11 Q12
  
 2   Q12 Q22
   0
0
 12  
0  1t  1F 


0   2t   2F 
Q66    12t 
Interaction between plies
• 0/90/45 laminate
• Constraining effect of adjacent laminates
(0/90)s laminate
• Stress-free expansion of layers
• Constrained deformation
Residual strains
• Free strains in x-y system (Checks?)
 xF   m 21F  n 2 2F   m 21  n 2 2 
 F  2 F
 2

2 F 
2


n


m


n


m

 y 

1
2 
1
2  T
 F  2mn( F   F )  2mn(   ) 
1
2 
1
2 
 xy  

m  cos  , n  sin 
• In vector form 𝜺𝐹𝑇 = 𝜶𝛥𝑇
• What is the coefficient of thermal expansion in
the 45-deg direction?
• The actual strains in the ply due to thermal loads
are denoted as 𝜺𝑁 for “non-mechanical”
• The “residual strains” or the mechanical strains of
non-mechanical origin are 𝜺𝑀 = 𝜺𝑁 − 𝜺𝐹
Residual stresses
• Residual strains in k-th layer
𝜺𝑅 = 𝜺0𝑁 + 𝑧
𝑘
𝑁
𝜿 −
𝐹
𝜺𝑘
• Residual stresses in k-th layer
 xR   Q11 Q12
 R 
 y   Q12 Q22
 R  Q Q
26
 xy   16
 xN   xF  
Q16    x0 N 

   

Q26    y0 N   z( k )  yN    yF  
 N   F  
Q66    xy0 N 
 xy   xy  
• What terms will be the same in two layers,
under what conditions?
Thermal loads
• If a laminate is subjected to temperature change without any
loads then the stress and moment resultants should be zero.
 N xR  h /2  xR 
 R
 R
 N y     y dz  0
 N R   h /2  R 
 xy 
 xy 
 M xR  h /2  xR 
 R
 R
 M y     y zdz  0
 M R   h /2  R 
 xy 
 xy 
• Substituting from previous slide for in-plane equation for
symmetric laminate
0N
F
N
 x  h /2  x 
Nx 
 0N 
 F
 N
A  y    Q  y dz   N y 
 0 N   h /2  F 
N N 
 xy 
 xy 
 xy 
• Loads needed to produce same strains without temperatures
Thermal loads for a single isotropic
layer
• For a single isotropic layer 𝜀1𝐹 = 𝜀2𝐹 = 𝛼𝛥𝑇
E
 E

• The matrix A
0
1 
1 
2

E
A
1  2

 0

• Thermal loads
2
E
1  2
0

0h


G

T 
1 

 ETh  
N
N  A T  
1 
1   
 0 


0 
• Justify letter by letter!
With bending
• Thermal moment resultants
F



x
h /2
 F
N
M   Q  y  zdz
 h /2
 F 
 xy 
• Calculating strains and curvatures under
thermal loads
𝐀𝜺0𝑁 + 𝐁𝜿𝑁 = 𝐍𝑁
𝐁𝜺0𝑁 + 𝐃𝜿𝑁 = 𝐌𝑁
With Tsai-Pagano Material constants
• Thermal loads
 N xT 
K  K 2 cos 2 
h /2  1
 T


N

0.5
K

K
cos
2

 y
 1
Tdz
2

 h /2 
N T 

K
sin
2

xy
3


 
• Thermal material constants
K1  U1  U 4 1   2   U 2 1   2 
K 2  U 2 1   2   U1  2U 3  U 4 1   2 
K 3  U 2 1   2   2 U 3  U 5 1   2 
• Any checks that we can apply?