Transcript Slide 1

Nanophotonics
Prof. Albert Polman
Center for Nanophotonics
FOM-Institute AMOLF, Amsterdam
Debye Institute, Utrecht University
Nanophotonics: defined by its applications
•
•
•
•
•
•
•
•
•
•
•
communications technology
lasers
solid-state lighting
data storage
lithography
(bio-)sensors
optical computers
solar cells
light-activated medical therapies
displays
smart materials
Kenniseconomie
Large interest
from industry in
fundamental
research
on nanophotonics
Nanophotonics is a unique part of physics/chemistry/materials
science because it combines a wealth of scientific challenges
with a large variety of near-term applications.
Decreasing length scales in photonics
km
m
mm
nm
Optical fiber
kern
mantel
bescherming
Silica fiber transparent at 1.55 m
1012 Hz
1.3 m
1.55 m
Optical fiber:
long distance communication
Planar optical waveguide
high index
low index
Si
1 mm
Photonic integrated circuits on silicon
SiO2/Al2O3/SiO2/Si
1 mm
Al2O3 technology by M.K. Smit et al., TUD
Optical clock distribution on a Si microprocessor
Photonics
on silicon
Intel Website
Computer interconnects hierarchy
Mihail M. Sigalas, Agilent Laboratories, Palo Alto, CA
http://www.ima.umn.edu/industrial/2002-2003/sigalas/sigalas.pdf
The world’s smallest erbium-doped optical amplifier
1.53 m signal, 1.48 m pump, 10 mW, gain: 2.3 dB
Waveguide spiral size: 1 mm2
minimum bending radius > 50 m
erbium
Lanthanide ions as optical dopants
H
He
Li
Be
B
C
N
O
F
Ne
Na
Mg
Al
Si
P
S
Cl
Ar
K
Ca
Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Br
Kr
Rb
Sr
Y
Zr
Nb
Mo
Tc
Ru
Rh
Pd
Ag
Cd
In
Sn
Sb
Te
I
Xe
Cs
Ba
La
Hf
Ta
W
Re
Os
Ir
Pt
Au
Hg
Tl
Pb
Bi
Po
At
Rn
Fr
Ra
Ac
Rf
Db
Sg
Bh
Hs
Mt
Uun Uuu Uub
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Th
Pa
U
Np
Pu
Am
Cm
Bk
Cf
Es
Fm
Md
No
Lr
La3+: [Xe] 4f n
n=1-14
….4f n 5s2 5p6
Erbium transition at 1.5 m
The world’s smallest erbium-doped optical amplifier
1.53 m signal, 1.48 m pump, 10 mW, gain: 2.3 dB
Waveguide spiral size: 1 mm2
minimum bending radius > 50 m
erbium
From a prototype to a 40 M$ company …
Symmorphix
Sunnyvale
CA, USA
Nanophotonics examples (1)
Surface plasmon polaritons
Nanocavities
n=1.5
Nanoscale energy transfer
600nm
Field confinement in
metal nanoparticle array
Nanophotonics examples (2)
W.L. Vos
Trapping light in 1 m
photonic crystals
Anomalous transmission
through nanohole arrays
M. Verschuuren
4 m
Photonic nanowires
J. Gomez Rivas
Plasmonic solar cells
K. Kuipers
Nanophotonics science fiction
What will you learn in this class?!
1) Theory of nanophotonics
2) Applications of nanophotonics
3) Nanophotonics fabrication techniques
4) New developments in science and technology
5) Presentation skills
Class schedule
Sept. 5
Sept. 12
Sept. 19
Sept. 26
Oct. 3
Oct. 10
Oct. 17
Class 1 - Resonances and refractive index
Class 2 - Nanoparticle scattering
Class 3 - Surface plasmon polaritons
Tour through Ornstein Lab
No class / homework assistance
Class 4 - Photonic crystals
13.00-15.00 hr. Class 5 - Local density of optical states
16.00 hr. Debye Lecture “Nanobiophotonics”
Oct. 24 No class
Oct. 31 Excursion to AMOLF-Amsterdam
Nov. 7
Class 6 – Rare earth ions and quantum dots
Nov. 14 Class 7 - Microcavities
Nov. 18 (Tuesday) Visit to Nanoned conference
Nov. 21 No class
Nov. 28 Class 8 - Near field optics
Dec. 5
Class 9 - Nanophotovoltaics
Dec. 12 Excursion to Philips Research- Eindhoven
Dec. 19 Class 10 - Metamaterials
Christmas break
Jan. 9
Class 11 – Transformation optics
Jan. 16 Nanophotonics summary
Jan. 23 Closing symposium
Fabrication technology:
• Thin film deposition
• Clean room fabrication technology
• Lithography
• Focused ion beam milling
• Colloidal self-assembly
• Bio-templating
Characterization technology:
•
•
•
•
•
Photoluminescence spectroscopy
Optical absorption/extinction spectroscopy
Near-field microscopy
Cathodoluminescence imaging spectroscopy
Pump-probe spectroscopy
Practical training at Debye Institute & FOM-Institute AMOLF
Weekly schedule
• Nanophotonics fundamentals
• Fabrication technology
• Characterization principles / techniques
• Application example
• News of the week
• Paper/homework presentations
• Excursions/labtours
Albert Polman
E-mail: [email protected]
Website: www.erbium.nl/nanophotonics
Course grading
No final examination
Grades are determined by:
Homework:
Paper presentation 1:
Paper presentation 2:
Participation in class:
60 %
10%
15%
5%
Homework must he handed in on Friday. No exceptions!
Homework grade: average of (all homework – worst made)
Use help by teaching assistants!
Course time 11.00-13.00
Absence: must be notified
Resonances and optical
constants of dielectrics:
basic light-matter interaction
Dielectric materials:
All charges are attached to specific atoms or molecules
Response to an electric field E:
Microscopic displacement of charges



P   0 E   0   1E
Macroscopic material properties: electric susceptibility ,
dielectric constant (or relative dielectric permittivity) 
Maxwell’s equations in a medium
E  
1
0
P
H  0
E P
  H  0

J
t t
H
  E  0
t





leading to wave equation:
1  2E
 2P
J
 E  2 2  0 2  0
c t
t
t
2
c
1
 0 0
2
2
1

E

P
J
2
 E  2 2  0 2  0
c t
t
t
• Solution in vacuum (P = J = 0):
E  E0e
i (kr t )
k 
2



c
• In dielectric material (J = 0):
Consider response of electrons bound to atom nuclei:
P   Nex
Equation of motion of electron:
d 2x
dx
m 2  m
 kx  eE
dt
dt
: damping coefficient for given material
k: restoring-force constant
resonance frequency 0  k / m
assume E is varying harmonically, and also
x  x0eit

Ne 2 / m
P   Nex  2
E
2
0    i
inserting P in wave equation gives
2

1
Ne
 2 E  2 1 
c  m 0

   2E
1
 2
  2
2
 0    i   t
solution:
E  E0ei ( k z z t )
with complex propagation constant kz =  + iα :
2

  
2
Ne
k z2    1 
 c   m 0


1
 2
 
2
 0    i  
z i ( z t )
E  E0e e
kz 
2


n
c
and therefore:
So that we find the refractive index of the dielectric:
2

Ne
2
n  1 
m

0



1

 2

2
 0    i  
multiple resonances wj for Z electrons per molecule:
2
fj
Ne
2
n  1

m 0 j  2j   2  i j
f
n
c

k z    i
Z
j
Where fj is the
oscillator strength or
(quantum
mechanically) the
transition probability
N is a complex number:
j

