Transcript Slide 1

Light trapping with particle plasmons
Kylie Catchpole1,2, Fiona Beck2 and Albert Polman1
1Center
for Nanophotonics, FOM Institute AMOLF
Amsterdam, The Netherlands
2Australian
National University
Canberra, Australia
Poor absorption below the bandgap
Indirect bandgap
Semiconductor (Si):
poor absorption just
below the bandgap
 thick cell required
Eg
solar spectrum
Si solar cell
Solution: light trapping
fair
fsubs
f subs
Goal:
• Increased efficiency (IR response)
and/or
• Reduced thickness (=cost)
Plasmon-enhanced photocurrent: 5 examples
Stuart and Hall, APL 69, 2327 (1996)
SOI
Derkacs et al., APL 89, 93103 (2006)
Schaadt et al., APL 86, 63106 (2005)
a-Si
Si
Pillai et al., JAP 101, 93105 (2007)
Nakayama et al., APL 93, 121904 (2008)
Si
SOI
GaAs
Plasmon-enhanced photocurrent: 5 examples
Stuart and Hall, APL 69, 2327 (1996)
SOI
Derkacs et al., APL 89, 93103 (2006)
Schaadt et al., APL 86, 63106 (2005)
a-Si
Si
What are the physical principles
Nakayama et al., APL 93, 121904 (2008)
Pillai et al., JAP 101, 93105 and
(2007) limitations
Si
SOI
GaAs
Light scattering
Rayleigh scattering
from point dipole
Scattering from point dipole
above a substrate
p
p
E

p
p 2 4 sin 2 
I s   
32 2c3 0 r 2
4 % Preferential
scattering
into high-index
substrate
96 %
See, e.g.: J. Mertz, JOSA-B 17, 1906 (2000)
(a)
Resonant scattering
TOT, DIP / R
REF
Metal nanoparticle
scattering
150
Material:
Ag (Palik)
100
Scattering vs Ohmic losses
50
Albedo  1 for D > 100 nm
0
F
Albedo
1,0
  m
  4 0 R
  2 m
3
Plasmon resonance:
 = -2m()
Ag
(b)
0,8
0,6
Absorption ~ r3
Scattering ~ r6
0,4
0,2
0,0
0
50
100
Sphere diameter (nm)
150
Metal nanoparticle scattering
Cross section > 1
All light captured and scattered
into substrate (=AR coating)
Resonance tunable by dielectric environment
Ag, D=100 nm
Si3N4 (n=2.00)
Q
D
O
Si (n=3.5)
Q
D
H
Optics Express (2008), in press
From point dipole to particle plasmon
96 %
FDTD
calculations
Fraction scattered into substrate
1
0.8
0.6
0.4
dipole
cylinder
hemisphere
sphere 100nm
sphere 150nm
0.2
0
500
550
600
650
700
Wavelength (nm)
750
0
800
Fraction scattered into substrate highest for
cylinder & hemisphere:
Strongest near-field coupling
Tradeoff: larger size  larger albedo
but lower coupling
Appl. Phys. Lett. 93, 191113 (2008)
Maximum path length enhancement
fair
fsubs
f subs
Highest path length
enhancement for
cylinder and hemisphere
enhancement
length
Path
maximum
path length
enhancement
Geometric series
horizontal dipole
100
Lambertian
hemisphere
30 x
cylinder
10
sphere 100nm
sphere 150nm
(A=0.90)
(A=0.95)
1
0.6
0.7
0.8
0.9
fraction into substrate
Fraction scattered into substrate
Appl. Phys. Lett. 93, 191113 (2008)
1
Scattering cross-section with dielectric spacer
σscat normalized to particle area
Larger spacing:
14
12
Q
Qscat, Qsubs
10
30 nm
30nm
Interference in driving
field
tot
8
sub
6
But:
lower coupling fraction
D
4
2
0
500
(+ local density of states
variation modifies albedo)
10 nm10nm
600
700
800
wavelength (nm)
900
1000
Appl. Phys. Lett. 93, 191113 (2008)
Ag nanoparticle formation on SiO2/Si3N4/TiO2 on Si
Thermal evaporation of 14 nm Ag
+ 300 °C anneal
Thermal SiO2
dave= 135 nm
f = 26%
n=1.46
LPCVD Si3N4
dave= 220 nm
f = 28%
n=2.00
APCVD TiO2
dave= 215 nm
f = 30%
n=2.50
Optical absorption (1-R-T) in Si wafers
Integrating
sphere
30 nm
100 μm
SiO2
Si3N4
TiO2
c-Si
Si3N4
c-Si
SiO2
Ref.
Ref.
TiO2
AR effect, interference
for shorter wavelength
+ redshift
Strongly enhanced
near-IR absorption
egineered by
dielectric spacer
TiO2
Si3N4
SiO2
Photocurrent, external quantum efficiency
front
SiO2
back
Si3N4
front
TiO2
front
back
back
Red-shifted EQE enhancement with refractive index of
underlying dielectric
Decrease at short wavelength due to phase shift
Small increase at long wavelength for TiO2
Relative photocurrent, EQE enhancement
TiO2
back
front
Si3N4
SiO2
SiO2
TiO2 coated Si:
EQE enhancement 2.7 fold
at λ = 1050 nm
Si3N4
TiO2
Note:
particle size and distribution
are not optimized
Design principles for plasmon-enhanced solar cells
1) Metal nanoparticles scat > 1
2) Coverage ~ 10-20 % required
3) D>100 nm  albedo > 0.95 i.e.
Ohmic losses < 5%
4) Angular distribution (=path length)
increased
5) Coupling fraction f = 0.96 for
point dipole
6) f reduces for larger particle size
7) scat increases with spacer thickness
8) f decreases with spacer thickness
Design parameter optimization
Include: inter-particle coupling
Appl. Phys. Lett. 93, 191113 (2008)
For details/references
visit: www.erbium.nl
VACANCIES in nano-photovoltaics
see: www.amolf.nl
Substrate Conformal Imprint Lithography
PDMS Stamp
Thin glass
PDMS stamp (6”) on 200 µm AF45 glass
1 m
Full-wafer soft nano-imprint
• Flexible rubber on thin glass
• Conform to substrate bow and roughness
• No stamp damage due to particles
Marc Verschuuren, Hans van Sprang
Spring MRS 2007, 1002-N03-05
Angular dependence of scattered light
fair
W
dav
Lambertian dav=2
Dipole dav~1.5
Increased power around critical angle for dipole compared
to isotropic Lambertian
less oblique path
K.R Catchpole and A. Polman, APL (2008)
Tadeoff between cross section and incoupling
Point dipole
Optics Express (2008), in press