Transcript Slide 1

Spatial distributions in a
cold strontium Rydberg gas
Graham Lochead
The group
Matt Jones
Charles Adams
Liz Bridge
James Millen
Danielle Boddy
Daniel
Christophe
Sadler
Vaillant
Graham Lochead 28/01/13
Rydberg Dipole blockade
Strong, tunable interactions
M. Saffman et al., Rev. Mod. Phys. 82 2313 (2010)
C.L. Vaillant et al., J. Phys. B 45 135004 (2012)
Graham Lochead 28/01/13
Dipole blockade spatial effects
Excited state
Column
density
Autocorrelation
Ground state
Radius (μm)
Position
A. Schwartzkopf et al., Phys. Rev. Lett. 107, 103001 (2011)
Graham Lochead 28/01/13
Further spatial effects
Dynamical crystallisation
P. Schauß et al., Nature 491, 87 (2012)
T. Pohl et al., Phys. Rev. Lett. 104, 043002 (2010)
Graham Lochead 28/01/13
Outline
• CPT in cold strontium atoms
• Optical Bloch equation model
• Autoionization microscopy
• Spatial electrometry
Graham Lochead 28/01/13
Cold atom source
• Zeeman slowed atomic beam
• 107 strontium atoms at 5 mK
• 5 x 109 atoms/cm3
Graham Lochead 28/01/13
CPT spectra
• Coupling laser locked
• Probe laser frequency stepped
• E-field does not field ionize
• Sub-natural linewidth
• Data for n = 56
Graham Lochead 28/01/13
Optical Bloch Equations
5snd
Ωc
5s5p
Free parameters
• Laser linewidths
• Rabi frequencies
• Laser detuning
• State linewidths
• Amplitude scaling
Ωp
Fixed parameters
5s2
Graham Lochead 28/01/13
Focus coupling laser
Fewer Rydberg atoms – reduced spontaneous ionization
Spatial intensity variation of
beam makes a difference
Graham Lochead 28/01/13
Spatial information
Translate a focused autoionizing beam
Graham Lochead 28/01/13
Lens setup
100 mm long
10 μm resolution
Graham Lochead 28/01/13
Rydberg spatial distribution
• Ground state fluorescence collected
• Can take distributions in both directions
Graham Lochead 28/01/13
Spatial widths: Coupling power
OBE
simulation
Autoionizing
probability
Graham Lochead 28/01/13
Electrometry
Use Stark effect to alter Rydberg distribution
Spatially varying detuning
G. Lochead et al., arXiv:1212.3270
Graham Lochead 28/01/13
Future work
Increase density with further cooling
1P
3P
1
3P
λ = 461 nm
Γ = 2π x 32 MHz
1st stage cooling
3P
2
Excite using the triplet lines
1
0
λ = 689 nm
Γ = 2π x 7.5 kHz
2nd stage cooling
1S
3S(D)
λ2 = 319 nm
3P
0
Blue MOT: ~ 5 mK
~ 2 x 109 atoms/cm3
Red MOT: ~ 400 nK
~ 2 x 1012 atoms/cm3
Graham Lochead 28/01/13
0(2)
1
λ1 = 689 nm
1S
0
Summary
•
Coherently excite strontium atoms to Rydberg states
•
Optical Bloch equation model works
•
10 µm resolution spatial distribution
•
Sensitive spatial electrometric technique
Graham Lochead 28/01/13