Transcript Slide 1
Spatial distributions in a cold strontium Rydberg gas Graham Lochead Rydberg states High principal quantum number n Ionization limit n = 68 n = 67 n = 66 n=8 n=7 Properties n=6 H ~ 0.1 nm n=5 n = 100 ~ 1 μm Graham Lochead 06/11/12 Dipole blockade Strong, tunable interactions M. Saffman et al., Rev. Mod. Phys. 82 2313 (2010) C.L. Vaillant et al., J. Phys. B 45 135004 (2012) Graham Lochead 06/11/12 Experimental dipole blockade Saturation of excitation H. Schempp et al, Phys. Rev. Lett. 104, 173602 (2010) Enhanced Rabi frequency Two atoms One atom A. Gaëtan et al, Nature Physics 5, 115 (2009) Graham Lochead 06/11/12 Dipole blockade directions CNOT gate operation L. Isenhower et al, Phys. Rev. Lett. 104, 010503 (2010) Single photon emitter Y. O. Dudin et al, Science 336, 887 (2012) Graham Lochead 06/11/12 Dipole blockade spatial effects Excited state Column density Autocorrelation Ground state Radius (μm) Position A. Schwartzkopf et al., Phys. Rev. Lett. 107, 103001 (2011) Graham Lochead 06/11/12 Further spatial effects Dynamical crystallisation P. Schauß et al., arXiv:1209.0944 T. Pohl et al., Phys. Rev. Lett. 104, 043002 (2010) Graham Lochead 06/11/12 Outline • Coherent Rydberg excitation • Laser stabilization • CPT in cold strontium atoms • Optical Bloch Equation model • Two electron information • State transfer • Autoionization microscopy • Statistical distributions Graham Lochead 06/11/12 Dispenser cell Need atomic reference cell Problems: • No vapour pressure at room temperature • Strontium reacts with glass Solution: • Dispenser-based cell E. M. Bridge et. al., Rev. Sci. Instrum. 80, 013101 (2009) Graham Lochead 06/11/12 Probe/cooling laser stabilization Sub-Doppler frequency modulation spectroscopy 5snd Coupling λ2 = 413 nm 5s5p Probe λ1 = 461 nm 5s2 Graham Lochead 06/11/12 Coupling laser stabilization EIT-based lock 5snd Coupling λ2 = 413 nm 5s5p Probe λ1 = 461 nm 5s2 M. Fleischhauer et al, Rev. Mod. Phys. 77, 633 (2005) R. P. Abel et al, Appl. Phys. Lett. 94, 071107 (2009) Graham Lochead 06/11/12 Cold atom source • Zeeman slowed atomic beam • 107 strontium atoms at 5 mK • 5 x 109 atoms/cm3 Graham Lochead 06/11/12 Chamber insides R. Löw et al, arXiv:0706.2639v1 Graham Lochead 06/11/12 Detecting Rydberg atoms Small signal – number resolving Large signal – average only Graham Lochead 06/11/12 CPT spectra • Coupling laser locked • Probe laser frequency stepped • E-field does not field ionize • Sub-natural linewidth • Data for n = 56 Graham Lochead 06/11/12 Optical Bloch Equations 5snd Ωc 5s5p Free parameters • Laser linewidths • Rabi frequencies • Laser detuning • State linewidths • Amplitude scaling Ωp Fixed parameters 5s2 Graham Lochead 06/11/12 Why strontium? Two valence electrons Graham Lochead 06/11/12 Autoionization • Resonant optical ionization for l < 8 • Independent of excitation W.E. Cooke et al, Phys. Rev. Lett. 40, 178 (1978) Graham Lochead 06/11/12 Temporal information Pulsed dye laser used for this experiment, ECDL for the rest J. Millen et al, J. Phys. B 44 184001 (2011) Graham Lochead 06/11/12 Spectral information Low Rydberg density High Rydberg density • Shape depends on state • Multi-channel quantum defect fit E. Y. Xu et al., Phys. Rev. A 35, 1138 (1987) J. Millen et al., Phys. Rev. Lett. 105, 213004 (2010) Graham Lochead 06/11/12 State transfer At high density allow the Rydberg gas to evolve: Δt = 0.5 μs Δt = 60 μs Δt = 100 μs At low density spectrum unchanged Graham Lochead 06/11/12 Lifetime analysis Look at the decay of signal at different spectral points: Δt = 100 μs 54F state 60μs 25μs A B 25μs A B Blue line: The decay of the 5s54f 1F3 state. Graham Lochead 06/11/12 60μs Including 5s54f state 13 ± 3% of the Rydberg population transferred to 5s54f state Graham Lochead 06/11/12 Mechanism The mechanism for population transfer is cold plasma formation: Plasma threshold Spontaneous ionization Population transferred • l-changing collisions Initial Rydberg # Black data: population transfer Red data: spontaneous ionization M. P. Robinson et. al., Phy. Rev. Lett. 85, 4466 (2000) Graham Lochead 06/11/12 Focus coupling laser Fewer Rydberg atoms – no plasma formation Spatial intensity variation of beam makes a difference Graham Lochead 06/11/12 Spatial information Translate a focused autoionizing beam Graham Lochead 06/11/12 Lens setup 100 mm long 10 μm resolution Graham Lochead 06/11/12 Rydberg spatial distribution • Ground state fluorescence collected • Can take distributions in both directions Graham Lochead 06/11/12 Spatial widths: Coupling power OBE simulation Autoionizing probability Graham Lochead 06/11/12 Spatial widths: Autoionizing power T.F. Gallagher, Rydberg Atoms Graham Lochead 06/11/12 Detection efficiency ng : ground state density Pde → 1 V : overlap volume ρ33 : Rydberg probability C : single ion conversion ε: detector efficiency Graham Lochead 06/11/12 ε = 21 ± 4 % Statistical information Graham Lochead 06/11/12 Towards blockade n = 75 1P 3P 1 3P λ = 461 nm Γ = 2π x 32 MHz 1st stage cooling 1S 3P 2 1 0 λ = 689 nm Γ = 2π x 7.5 kHz 2nd stage cooling 0 Blue MOT: ~ 5 mK ~ 2 x 109 atoms/cm3 Red MOT: ~ 400 nK ~ 2 x 1012 atoms/cm3 H. Schempp et al., Phys. Rev. Lett. 104, 173602 (2010) Graham Lochead 06/11/12 Electrometry Use Stark effect to alter Rydberg distribution Graham Lochead 06/11/12 Summary • Coherently excite strontium atoms to Rydberg states • 10 µm resolution spatial distribution • Number resolving technique • No interactions seen → Implement second stage cooling Thanks for listening Graham Lochead 06/11/12 The group Matt Jones Charles Adams Liz Bridge James Millen Danielle Boddy Daniel Christophe Sadler Vaillant Graham Lochead 06/11/12 Graham Lochead 06/11/12