Development of Affordable Bioelectronic Interfaces Using
Download
Report
Transcript Development of Affordable Bioelectronic Interfaces Using
Development of Affordable
Bioelectronic Interfaces Using
Medically Relevant Soluble
Enzymes
2006 AIChE Annual Meeting
San Francisco, CA
Brian L. Hassler1, Maris Laivenieks2, Claire Vieille2, J.
Gregory Zeikus2, and Robert M. Worden1
1-Department
of Chemical Engineering and Materials Science
2-Department of Biochemistry and Molecular Biology
Michigan State University, East Lansing, Michigan
Presentation Outline
Motivation
Dehydrogenase enzymes
Formation of bioelectronic interfaces
Characterization techniques
Results
Summary
Motivation
Rapid detection
Identification of multiple analytes
High throughput screening
Affordable fabrication
Dehydrogenase Enzymes
Catalyze electron transfer reactions
Cofactor dependence: NAD(P)+
Challenge: cofactor recycling
Substrate
enzyme
Substrate
Product
NAD(P)H NAD(P)HMEDox
Product
Dehydrogenase Dehydrogenase
Cofactor
Enzyme
Reaction
cofactor
enzyme
NAD(P)+
Enzyme
Reaction
cofactor mediator
+
NAD(P)MED
red
Regeneration
Enzyme Interface Assembly
Cysteine: branched, trifunctional linker
Thiol group: self assembles on gold
Carboxyl group: binds to electron mediator
Amine group: binds to cofactor
OH
Mediator used
N
O
OH
O
NH2
Toluidine Blue O (TBO)
O
O
P
O
H3C
N
O
O
P
HO
N
O
H3C
N
O
S
N
O
O
NH
O
HN
O
HS
N
O
CH3
O
NH2
B
O
N
Reaction Mechanism
TBO
CBA
EDC+/NHS*
EDC/NHS
Cysteine
Gold
Gold
Gold
NAD(P)+
Gold
Gold
Protein
Gold
Gold
*N-Hydroxysulfosuccinimide
+N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide
Hassler et al., Biosensors and Bioelectronics, 21(11), 2146-2154 (2006)
Presentation Outline
Motivation
Sensing mechanisms
Formation of bioelectronic interfaces
Characterization techniques
Results
Summary
Chronoamperometry
Technique:
Step change in potential
Measure current vs. time
E2
Potential
Current
E1
Parameters obtained:
Time
Time
Electron transfer coefficients (ket)
Charge (Q)
*
*
'
'
'
"
'
"
Surface
coverage
I =k
exp(-k etet()
t)
ketetQ
Qexp(-k
t)+k et Qexp(-k et t)
Q
nFA
Zayats et al.,
Katz,
Journal
E. and
of the
I. Willner,
American
Langmuir,
Chemical
13(13),
Society,
3364-3373
124, 14724-15735
(1997)
(2002)
Cyclic Voltammetry
Technique:
E1
Sensitivity (slope)
Maximum turnover (TRmax)
TRmax
sat
I cat
Io
FnA
E1
Potential
Time
Parameters obtained:
Current
Conduct potential sweep
Measure current
Potential
E2
Current
Concentration
Constant Potential Amperometry
Set constant potential
Vary analyte concentration
Current
Technique:
Parameters obtained:
Time
Sensitivity
Current
Concentration
Presentation Outline
Motivation
Sensing mechanisms
Formation of bioelectronic interfaces
Characterization techniques
Results
Summary
The Current System
Protein array
4 working electrodes
Diameter: 3 mm
Counter electrode
Electrode formation:
Reservoir in PDMS*
Molecular self-assembly
Different enzymes
* Polydimethylsiloxane (PDMS)
Sorbitol Dehydrogenase (SDH)
Organism: Pseudomonas sp. KS-E1806
Cofactor dependence: NAD+
Temperature stability: 30-50C
Sorbitol
Fructose
enzyme
Dehydrogenase
Enzyme
Reaction
cofactor
mediator
NAD+
MEDred
NADH
MEDox
Cofactor
Regeneration
Chronoamperometric Response
Substrate: Sorbitol
Concentration: 5 mM
Kinetic parameters:
k’=
k”= 87 s-1
Surface coverage:
690 s-1
’=
”= 8.010-12 mol cm-2
8.710-12 mol
cm-2
Current (mA)
120
100
80
60
40
20
0
0
0.01
0.02
0.03
Time (s)
0.04
0.05
Cyclic Voltammetric Response
Concentration range: 3-21 mM
Sensitivity: 3.4 mA mM-1 cm-2
TRmax=38 s-1
5
0
300
100
-5-100
-10
-15
Voltage (mV)
-300
Current (mA)
10
Current (mA)
15
14
12
10
8
6
4
2
0
0
10
20
Concentration (mM)
30
Amperometric Response
Potential: -200 mV
Concentration range: 1-6 mM
Sensitivity: 2.8 mA mM-1 cm-2
10
Current (mA)
Current (mA)
5
4
3
2
1
8
6
4
2
0
0
0
20
40
Time (s)
60
80
0
2
4
6
Concentration (mM)
8
Other Enzymes Used
Mannitol dehydrogenase
Organism: Lactobacillus reuteri
Reaction: Fructose
Mannitol
Cofactor specificity: NAD+
Thermal stability: 50C-90C
Other Enzymes Used
Secondary alcohol dehydrogenase
Organism: Thermoanaerobacter ethanolicus
Reaction: 2-Propanol
Acetone
Cofactor specificity: NADP+
Thermal stability: 30C-100C
Chronoamperometric Results
Enzyme
Electron Transfer Coefficient
Substrate
-1
SDH
MDH
2ADH
Sorbitol
Mannitol
2-Propanol
k'et(s )
6843.2
5059.3
69013
* Chronoamperometric
-1
k"et(s )
870.3
452.1
NA
Surface Coverage
'(10-12 mol cm-2)
8.70.4
7.20.3
161.3
"(10-12 mol cm-2)
8.00.9
6.00.1
NA
measurements were made at a
concentration of 5 mM of the substrate.
Cyclic Voltammetry Results
Enzyme
Substrate
SDH
MDH
2ADH
Sorbitol
Mannitol
2-Propanol
Saturation Current
(Isat-mA)
11.60.3
9.90.1
7.10.4
Sensitivity
(mA mM-1 cm-2)
3.40.4
8.40.5
2.50.2
Concentration Range Turnover Rate
Low (mM) High (mM)
(s-1)
3
21
38.11.2
1
11
20.10.3
28.50.4
3
21
Conclusions
Developed self-assembling biosensor array
Multiple analyte detection
Sorbitol
Mannitol
2-Propanol
Characterized interfaces electrochemically
Chronoamperometry
Cyclic voltammetry
Constant potential amperometry
Acknowledgments
Ted Amundsen (CHEMS-MSU)
Yue Huang (EECS-MSU)
Kikkoman Corporation
Funding sources
Michigan Technology Tri-Corridor (MTTC)
IRGP programs at MSU
Department of Education GAANN Fellowship
Thank you
Questions?