Transcript Document

Mathematics
Session
Differentiation - 1
Session Objectives
 Derivative of a Function
 Geometrical Meaning, Physical Meaning

Existence Theorem
 Relation Between Continuity and Differentiability
 Differentiation Using First Principle
 Class Exercise
Derivative of a Function
y = ƒ  x   Continuous function
y+δy = ƒ  x+δx 
ƒ  x + δx  - ƒ  x 
δy

=
δx
δx
δx  small increment in x
δy  small increment in y
ƒ  x + δx  - ƒ  x 
δy
 lim
= lim
δx
δx  0 δx
δx  0
=
[ x  very small ]
dy
d
or ƒ  x  or
ƒ  x  Derivative or Differential Coefficient

dx
dx
Derivative at a Point
Putting x = p
d
 dy 
or ƒ  p  or
ƒ  x x=p


dx
dx

x=p
If ƒ  p  exist, then ƒ  x  is differentiable at x = p
Geometrical Meaning
y  ƒ x 
lim
h0
Continuous function
ƒ  c +h - ƒ  c 
h
= lim (slope of chord CB) = Slope of tangent at C
BC
 ƒ  c   the slope of the tangent at C c, ƒ c 
Physical Meaning
Distance s is travelled in time t
s = ƒ t 
Distance s+ δs is travelled in time t + δt
s+δs = ƒ  t +δt 
 δs = ƒ  t +δt  - ƒ  t 
δs ƒ  t + δt  - ƒ  t 
 Average velocity =
=
δt
δt
ƒ  t + δt  - ƒ  t 
δs
= lim
= ƒ t 
δt
δt 0 δt
δt 0
Velocity at time t = lim
Existence Theorem
ƒ  x0 + δ x  - ƒ  x0 
 d

lim
exists if δx
 dx ƒ  x  
δx
0

 x=x0
exists
This limit will exist if
lim
ƒ  x0 + δx  - ƒ  x0 
-
δx  0
δx
 L.H.D. at
 x  x0 
= lim
ƒ  x0 + δx  - ƒ  x0 
δx  0+
= R.H.D. at
δx
 x  x0 
Example
Show that f  x  = x2 is differentiable at
x = 1 and find f’ (1).
Solution:
(LHD at x = 1) = limx 1
ƒ  x  - ƒ 1
x -1
= lim
h0
ƒ 1- h - ƒ 1
1- h-1
2
1-h -12

-2h+h2
= lim
= lim
= lim
h0
-h
h0
-h
h0
2 -h = 2
Solution Cont.
(RHD at x = 1) = lim
x 1+
ƒ  x  - ƒ 1
x -1
= lim
ƒ 1+h - ƒ 1
1+h-1
h0
2
1+h -1

2h+h2
= lim
= lim
= lim
h0
h
h0
 (LHD at x = 1) = (RHD at x = 1)
 f(x) is differentiable at x = 1
f’(1) = 2
h
h0
2+h = 2
Relation Between Continuity
and Differentiability
If a function is differentiable at a point, it is
necessarily continuous at that point and the
converse is not necessarily true.
i.e. ƒ  x  is differentiable at x  x0
 ƒ  x  is continuous at x  x0
Differentiation Using First Principle
Finding the derivative of a function using
the definition is called differentiation from
first principle.
i.e.
ƒ  x +h - ƒ  x 
d
ƒ  x  = lim
dx
h
h0
Some Important Derivatives - 1
 
d x
e
dx
Using first principle, find
x
Let y  e and y+δy = ex+δx
δy e

=
δx
x+δx 
- ex
δx
dy
δy
e

= lim
= lim
dx δx 0 δx δx 0
x+δx 
- ex
δx
 eδx -1 
x
= e × lim 
 = ex ×1= ex
δx  0  δx 


 eδx -1 
= lim e 



δx  0
 δx 
x




ez -1
lim
= 1
z 0 z

Some Important Derivatives - 2
Using first principle, find
d
logex 
dx
Let y =logex and y +δy = loge (x +δx)

δy loge  x + δx  - loge x
=
δx
δx
 x +δx 
loge 
loge (x +δx)-logex
dy
δy
x 


= lim
= lim
= lim
dx δx  0 δx δx  0
δx
δx
δx  0
Continued
 δx 1  δx 2 1  δx 3

δx 


- ×
+ ×
-…


loge 1+

3  x 
x 2  x 

x 



= lim
= lim
δx
δx
δx  0
δx  0

δx  

Expanding
log
1+


x  


 1 1 δx 1  δx 2
 1
= lim  - ×
+ ×
-… =
2
3
3
δx  0  x 2 x
 x
x


Some Important Derivatives - 3
Using first principle, find
d
 tanx 
dx
Let y = tanx and y+δy = tan x+δx 
δy tan  x + δx  - tanx

=
δx
δx

tan  x + δx  - tanx
dy
δy
= lim
= lim
dx δx  0 δx δx  0
δx
 sin  x + δx  sinx 


cos
x
+
δx
cosx




= lim 
δx
δx  0
Continued
= lim
δx  0
sin  x + δx  cosx - cos  x +δx  sinx
δx×cos  x + δx  ×cosx
=
1
sinδx
× lim
cosx δx  0 δx×cos  x + δx 
=
1
sinδx
1
× lim
× lim
cosx δx  0 δx
δx  0 cos  x + δx 
 sinAcosB- cosAsinB = sin A -B
1 
1
 1
=
×1×
=
= sec2x

cosx  cos2x
 cosx
Some Important Derivatives - 4
Derivative of cot-1x for all x  R
1
Let y  cot x then, x = coty
and  x+δx  = cot  y+δy 

δx cot  y + δy  - coty
=
δy
δy


δy
δy
=
δx cot  y + δy  - coty
dy
δy
δy
= lim
= lim
dx δx  0 δx δx  0 cot  y + δy  - coty

δx  0  δy  0
Continued
= lim
δy
 y + δy  - cosy 


sin
y
+
δy
siny




δy  0 
 cos
= lim
δy  0
δy  sin  y +δy  siny
sinycos  y +δy  - cosysin y +δy 
= lim
δy  0
δy×sin  y + δy  siny
-sinδy
δy
× lim sin y+δy  ×siny
δy 0 sinδy δy 0
=- lim
Continued


= -1×sin2y = -sin2y
=-
=
1
cosec2y
-1
1+ x2 
=
-1
1+cot2y
Formulae
 
1
d n
x =nxn-1
dx
2 
d x
e = ex
dx
 
 
3
d x
a = ax loga
dx
 4
d
1
logex =
dx
x
5
d
sinx = cosx
dx
6
d
cosx  = -sinx
dx
Formulae (Con.)
7 
d
 tanx = sec2x
dx
 8
d
cotx =-cosec2x
dx
9
d
secx = secxtanx
dx
10
11
12 
d
cosecx =-cosecxcotx
dx


d
1
sin-1x =
dx
1- x2
d
-1
cos-1x =
dx
1- x2
Formulae (Con.)






13
d
1
tan-1x =
dx
1+ x2
14
d
-1
cot-1x =
dx
1+x2
15
d
1
sec-1x =
dx
x x2 -1
16
d
-1
cosec-1x =
dx
x x2 -1






Example-1
Find the derivative of sin2 x using the first principle.
Solution: Let y = sin2 x and y +δy = sin2 (x +δx)
δy sin2 (x + δx) - sin2 x
Then,
=
δx
δx
dy
δy
sin2 (x + δx) - sin2 x

= lim
= lim
dx δx0 δx δx0
δx
Continued
sin(2x  x) sin x
x
x0
 lim
sinδx
δx0 δx
= lim sin(2x + δx)× lim
δx0
= sin2x ×1 = sin2x
 sin2 A - sin2B = sin(A +B)×sin(A - B)


Example-2
Find the derivative of
tanx from the first principle.
Solution: Let y = tanx and y +δy = tan  x +δx
tan  x + δx  - tanx
δy
Then,
=
δx
δx
tan(x + δx) - tanx
dy
δy

= lim
= lim
dx δx0 δx δx0
δx

 tan(x + δx) - tanx   tan(x + δx) + tanx  

= lim 
 ×

  tan(x + δx) + tanx 
δx
δx0 

 



Continued
= lim
tan(x + δx) - tanx
δx0 δx 

 tan(x + δx) + tanx 
 sin(x + δx) sinx 


cos(x
+
δx)
cosx


= lim
δx0 δx  tan(x + δx) + tanx 


sin(x + δx)cosx - sinxcos(x + δx)
δx0 cosxcos(x + δx)δx  tan(x + δx) + tanx 


= lim
Continued
sin(x  x  x)
x 0 cos x cos(x  x)x  tan(x  x)  tan x 


 lim
[Using sin A cosB  cos A sinB  sin(A  B)]
=
=
1
1
sinδx
× lim
lim
lim
cosx δx0 cos(x + δx) δx0 δx δx0
1
1
1
×
×1×
cosx cosx
2 tanx
=
sec2 x
2 tanx

1
tan(x + δx) + tanx

Example-3
Find the derivative of
2x  3 using the first principle.
Solution: Let y = 2x +3 and y + δy = 2(x +δx)+3
Then,
δy
2x + 2δx + 3 - 2x + 3
=
δx
δx
 2x +2δx +3 - 2x +3 
dy
δy

= lim
= lim 


dx δx0 δx δx0 
δx

 2x +2δx +3 - 2x +3   2x +2δx +3 + 2x +3 
= lim 
 


δx
δx0 
  2x +2δx +3 + 2x +3 
Continued
2x +2δx +3 - 2x - 3
= lim
δx0 δx
= lim

δx0 δx
= lim
δx0
=

2x +2δx +3 + 2x +3


2δx
2x +2δx +3 + 2x +3
2
2x +2δx +3 + 2x +3
1
2x + 3


Thank you