Folie 1 - University of Nebraska–Lincoln

Download Report

Transcript Folie 1 - University of Nebraska–Lincoln

Training of the exchange bias effect
Training effect:
reduction of the EB shift upon
subsequent magnetization reversal
of the FM layer
- origin of training effect
- simple expression for
0HEB vs. n
Examples: recent experiments and simulation
NiO(001)/Fe(110)12nm/Ag3.4nm/Pt50nm
Co/CoO/Co1-xMgxO
10
8
e
oHEB (n)  oHEB

n
-µ0 HEB [mT]
empirical fit

n
6
0
2
4
6
8
10
n
J. Keller et al., PRB 66, 014431 (2002)
A. Hochstrat, Ch. Binek and W. Kleemann,
PRB 66, 092409 (2002)
oHEB (n)  oH
e
EB

D. Paccard , C. Schlenker et al.,
Phys. Status Solidi 16, 301 (1966)
Monte Carlo
Simulations

n
U. Nowak et al., PRB 66, 014430 (2002)
oHEB (n)  oH
e
EB


-Simple expression
n
- applicable for various systems
Simple physical basis ?
Phenomenological approach
Meiklejon Bean
0HEB
JS S
  AF FM
MFM t FM
FM interface magnetization: SFM
coupling constant:
tFM
J
AF interface magnetization: SAF
const.
oHEB (n)  K SAF (n)
MFM
:saturation magnetization of FM layer
confirmation by SQUID measurements
and MC simulations
SAF
- microscopic origin of n-dependence of SAF:
Sn3  SAF (n  3)  SeAF
Change of AF spin configuration
triggered by the FM loop through
exchange interaction J
deviation from the equilibrium value
SeAF  lim SAF (n) equilibrium AF
n
1
2
3
S
Increases free energy by
4
under the assumption
5
6
7
n
F
F(S)  F(S)
1
1
2
4
F  a Sn  b Sn
2
4
interface magnetization
Relaxation towards equilibrium
F
S  
S
Lagrange formalism with
potential F and strong dissipation
(over-critical damping)

Landau-Khalatnikov

G.Vizdrik, S.Ducharme, V.M. Fridkin, G.Yudin,
PRB 66 094113 (2003)
:phenomenological damping constant
Training not continuous process in time, but triggered by FM loop
discretization of the LK- equation
8
t2,3
n=1
-1
n=2
n=3
2
0

0
4000
n=4
8000
12000
t
16000
20000
-2
dSAF/dt,<dSAF/dt>
SAF
6
4
tn,n+1: time between loop
0
#n and n+1

n
: measurement time
of a single loop
: loop #
/2
dSAF
1
dSAF

  
dt
dt
  / 2 dt
SAF (n  1)  S AF (n)



SAF
Discretization:
SAF (n  1)  S AF (n)


LK- differential equation  difference equation

 S AF

F

Sn

  SAF (n  1)  SAF (n)   Sn a  b Sn
where
  / 
and
Sn  SAF (n)  SeAF
2

Minimization of free parameters:


 SAF (n)  SAF (n  1) 
2


lim
a

b

S
 a
 lim 
0
n

n

n
Sn


S AF (n)  SeAF 
a0
Physical reason :
1
a<0 ruled out
A B
 2  
n n
stable equilibrium at S=0
SAF
1
1
2
4
F  a Sn  b Sn
2
4
a<0
0
1
2
3
4
5
6
7
n
S
2
a>0 ruled out
Non-exponential relaxation

  SAF (n  1)  SAF (n)   Sn a  b Sn
2

0
SAF (n)  ea n  Seq
Sn  Sn
n  1
3
Exponential relaxation
negligible spin correlation
Exchange bias: AF spin correlation
a0
non-exponential relaxation
Simplified recursive sequence
b
3
SAF (n  1)  SAF (n)   Sn

with oHEB (n)  K SAF (n)

0 (HEB (n  1)  HEB (n))   0 (HEB (n)  H )
where
b
 2
K 
e
EB

3
power law:
e
oHEB (n)  oHEB


n
Correlation between:
recursive sequence:

0 (HEB (n  1)  HEB (n))   0 (HEB (n)  H )
e
EB

3
Substitution
oH
e
EB


n 1
e
oHEB (n)  oHEB

 oHEB (n  1)
1
n 1

1
n

1
2n n
1
 0.5

n
4
1
1

 0.48...
3 6 3
error <5%
80

 K
2b
F
60
b
40
20
Physical interpretation:
- Steep potential F
0
-3
large b

- damping
large
increases with increasing
 relaxation rate
-1
0
1
2
3
S
deviations from equilibrium unfavorable
- Training triggered via AF/FM coupling
-2
small training effect,
JK
K
 means strong decay of EB after a few cycles
 increases with increasing 

small
Comparison with experimental results on NiO-Fe
1st& 9th hysteresis of NiO(001)/Fe
400
T=5K
(001) compensated
12nm
1.
Fe
2
m [nA m ]
200
0
9.
NiO
-200
-400
-200
-100
0
µ 0 H [mT]
100
200
10
experimental data
9
recursive sequence:

e
0HEB
 4.45 mT input from power law fit
1 N 0 HEB (n)  HEB (n  1)


N  1 n2  H (n)  He 3
7
 
0
EB
EB

6
5

3
start of the sequence
8
n
-µ0 HEB [mT]
0HEB (n  1)  0HEB (n)   0 (HEB (n)  H )
e
EB
0
3
6
n
power law:
e
oHEB (n)  oHEB


n
9
10
experimental data
HEB
9
recursive sequence


f   HEB (n)  0 HEB (n)  H
8
n
2
e
EB
f
f
,
0
0
e
(0HEB )


3
 HEB (n  1)

2
min.
  0.015 (mT)
and
7
0HeEB  3.66 mT
6
5
0
-2
3
n
6
9