Transcript Document

Magnetic thin films:
Physics
201H
from basic research to spintronics
Christian Binek
11/18/2005
Why thin films
Size matters
Length (and time) scales determine the physics of a system
Quantum mechanics tells us: Confinement of electrons by lowering dimensions
affects the electronic states
Electronic states
3D bulk 2D film 1D wire
0D quantum dots
artificial atoms
all macroscopic properties
Physics
201H
11/18/2005
When can films considered to be thin
or
thin with respect to what
d
dcharacteristic length
Thin in comparison with the characteristic length scale
Examples:
-Superconducting thin film
thickness  correlation length
-optical thin film like dielectric mirrors
Length scale  /4  500nm/4
Physics
201H
-Magnetic
thin films approach the ultimate extreme
thickness  quantum mechanical exchange interaction length  a few atomic layers
11/18/2005
Exchange J(d)
ferromagnet
spacer
d
nonmagnetic
ferromagnet
Spacer thickness d in # of atomic layers
J(d=8)>0
d=8 monolayer
Ferromagnetic
coupling
J(d=10)<0
d=10 monolayer
Antiferromagnetic
coupling
How to grow magnetic heterostructures
>
250 000
?
Molecular Beam Epitaxy
•Thin film growth @
low deposition rate
•Ultra high vacuum condition
 1010 mbar ( 108 Pa )
Important growth modes in heteroepitaxy
specific free energy
B   A  
Layer-by layer (Frank van der Merwe)
substrate
deposited
material
Monolayer followed by 3D islands (Stranski Krastanov)
interface
B   A  
3D islands (Volmer weber)
Reflection High-Energy Electron Diffraction
RHEED
 3o
Electron gun
up to 50 keV
sample RHEED Eye
screen camera
What are the magnetic heterolayers good for ?
Basic components of modern spintronic devices
•Conventional electronics has ignored the spin of the electron
•Advantages using spin degree of freedom:
magnetic field sensors
M-RAM
Spin-transistor
semiconductor
Quantuminformation
•Impact of GMR based field sensors on magnetic data storage
Areal density [Mb/in2]
Evolution of magnetic data storage on hard disc drives
10
5
10
4
10
3
10
2
10
1
10
0
10
-1
10
-2
10
-3
Superparamagnetic effect
GMR
Magnetoresistive
heads
inductive read head
1960
1970
1980
Year
1990
2000
2010
rotating sensor
layer FM1
fixed layer
FM2
 How to pin FM2 while the sensor layer FM1 rotates?
Exchange Bias!
Pinning of the ferromagnet
by an antiferromagnet
from T>TN
to T<TN
2
m [10 Am ]
field cooling:
-7
10
HEB : 
-40
JS AFSFM
m0MFM tFM
5
H
-20
20
AF
40
m0H [mT]
-5
-10
Hfc
TN
T
Meiklejohn Bean: uniform magnetization reversal of a pinned FM
FM interface magnetization: SFM
MFM
coupling constant: J

M
tFM
5
AF interface magnetization: SAF
KFM, H
-40
MFM
10
-20
20
40
m0H
:saturation magnetization of FM layer
-5
Exchange bias field:
m0 H E  
J S AF S FM
-10
M FM t FM
2
2
F
H
M
t
cos


K
t
s
i
n

F -m-(
m
H
M
t

J
S
S
)
co
s


K
t
sin

-J
S
S
cos
0
FM
FM
FM
FM
0
FM FM
AF
FM
FA
MF FM
FM

JS AF S FM 
 m0 H 
 M FM t FM
M FM t FM 
AF/FM-interface coupling
 Stoner-Wohlfarth
Electric control of the Exchange Bias
Investigated multilayer system:
Cr2O3(0001)/Pt0.67nm/(Co0.35nm/Pt1.2nm)3/Pt3.1nm
tPt=1.20nm
Co
tCo=0.35nm
Pt
Pt
Co
Pt
Co
Cr2O3:Magnetoeletric
Magnetoeletriceffect
AF, TNof=308K
Cr2O3
0
*
SQUID-magnetometry
@ T=290K
electric
field E=U/d
M  αIIE
-5
Magnetization
-10
M=m/V
-6
Cr2O3 (0001)
M
5
m [ 10 emu ]
U
FM thin film
with
perpendicular
magnetic
anisotropy
Idea:
E M contributes to SAF
JS S
m 0 H E   AF FM
M FM t FM
-15
U
-20
-25
Cr2O3 (0001)
-150
-100
-50
0
50
U [V]
*A. Hochstrat, Ch.Binek, Xi Chen, W.Kleemann
, JMMM
100
150
272-276, 325 (2003)
Change of the exchange bias field as a function of the electric field at T = 150K
(µ0HE) [mT]
0.04
0.00
Co
Pt
U=Ed
Cr2O3
(0001)
-0.04
-300
0
300
E [kV/m]
2 Magnetoelectric Switching of Exchange Bias*: Control via field-cooling
*P.
Borisov, A. Hochstrat, Xi Chen, W. Kleemann and Ch. Binek, PRL 94 117203 (2005)
Magneto-optical Kerr measurements @ T = 298 K after cooling from T>TN in m0Hfr = 0.6 T
Magnetic Field Cooling (MFC)
1.0
M / MS
0.5
(+,-)
(+,+)
EfrHfr<0
EfrHfr>0
cooling from
M E F C (+,-)
T>TN
a l i o
in m0Hfr = +0.6 T g e e o
n c l l
and
e t d i
n
t r
Efr=-500 kV/m
g
o i
0.0
c
-0.5
-1.0
-0.2
0.0
0.2
cooling from
M E F C (+,+)
T>TN
a l i o
in m0Hfr =+0.6 T g e e o
n c l l
and
e t d i
n
Efr=+500 kV/m ot ri
g
[T]
m0H [mT]
The sign of the Exchange bias follows the sign of EfrHfr
c
Spintronic applications*
*Ch.
Binek and B. Doudin, J. Phys.: Condens. Matter 17 (2005) L39–L44
V
V
FM 2
FM 2
ME
ME
FM 1
FM 1
R
H
U
U
V
V
FM2
FM2
NM
NM
FM1
FM1
ME
ME
R
-He-Hi
He-Hi
H
Exclusive Or
x|y |
0|0|
0|1|
1|0|
1|1|
xORy
0
1
1
0
Example:
0
+V
-H
X:= Voltage
+V
0
-V
1
Input
Y:= magn. field
+H
1
-H
0
R high
0
R low
1
Output
R
0
H
Basic research with magnetic heterostructures
generalized Meiklejohn Bean approach
finite anisotropy KAF≠0
J
3
3
S3AF SFM
J SAF SFM
J
m0 He  

MFM tFM
8 K 2AF MFM tFM t 2AF
:coupling constant
SAF/FM :AF/FM interface magnetization
tAF/FM :AF/FM layer thickness
MFM
:saturation magnetization of FM layer
Experimental check of advanced models
understanding the basic microscopic mechanism of exchange bias
Exchange bias is a non-equilibrium phenomenon
new approach to relaxation phenomena in non-equilibrium thermodynamics
The training effect: a novel approach to study
relaxation physics
Training effect:
reduction of the EB shift upon
subsequent magnetization reversal
of the FM layer
- origin of training effect
- simple expression for
m0HEB vs. n
Relaxation towards equilibrium
F
S  
S

Landau-Khalatnikov

:phenomenological damping constant
Training not continuous process in time, but triggered by FM loop
discretization of the LK- equation

Discretization:
SAF
SAF (n  1)  S AF (n)


LK- differential equation  difference equation
Comparison with experimental results on NiO-Fe
1st& 9th hysteresis of NiO(001)/Fe
400
T=5K
(001) compensated
12nm
1.
Fe
2
m [nA m ]
200
0
9.
NiO
-200
-400
-200
-100
0
µ 0 H [mT]
100
200
10
experimental data
mHEB
9
recursive sequence


f   HEB (n)  m0 HEB (n)  H
8
n
2
e
EB
f
f
,
0
0
e
(m0HEB )


3
 HEB (n  1)

2
min.
  0.015 (mT)
and
7
m0HeEB  3.66 mT
6
5
0
-2
3
n
6
9
Magnetic Nanoparticles
Collaborations
self-assembled Co clusters
I thermally
You wantdecompose
to know
metal
whatcarbonyls
I am doing?
in the presence of
appropriate surfactants
25nm
Transmission
electron microscopic
image
~5nm
Fundamental questions
Which magnetic interactions dominate the system
What kind of magnetic order can we observe
For large particle distances the dipolar interaction will dominate
Here is a real fundamental question:
Do dipolar systems still obey extensive thermodynamics
What does this mean:
Magnetic moment
,T,H
= 2  Magnetic moment
Simulations suggest:
Yes: for a 2 dimensional array of dipolar interacting particles
but
No: for a 3 dimensional array of dipolar interacting particles
Modifications of conventional thermodynamics required
,T,H
Summary
MBE is a technology at the forefront of
modern material science
magnetic heterolayers are basic ingredients for
spintronic applications
magnetism of thin films and nanoparticles
provides experimental access to fundamental questions in statistical
physics
25nm
Mechanical analogy
V(X)
Fx  
dV
dx
equilibrium
xeq
F()
dV
0
dx
x
-eq
dV
d 1 2

Dx 

dx dx  2

Damped
harmonic oscillator:
m
mx  x  Dx  0

equilibrium
eq
dF
0
d

2
D
 1
Solution for:    : 02
m
 2 
x(t)  e
t

2


A e


2
 1
2
 2   0 t
 




x0

1
A  x0  
 x0 
2
2
 2  1    2

0
 2 


 






x0

1
B 
 x0 
2
2
 2  1    2

0
 2 


 


2
B e
 1
2
 2   0 t
 




x(0)  0
with
x(0)  x0
2
 1
2


0
 2 
 
A0
B  x0
x(t)  x 0e
t

2
 x0 e
2
2
e
 1
2
 2   0 t
 
2
0  t
1
 1
2
2
 2   0  2  0   ...
 
x(t)  x 0 e
2
0  t
dV

x


also derived from
dx
integration of:
  m/ 
where
dV
 Dx
dx
0
dV
mx   x  
dx
Temporal evolution of X with increasing damping:
x

1,0
0,8
x0
X(t)
0,6
dx
D
   dt
x
0
t
x(t)  x 0 e
0,4
0,2
0,0
0
5
10
t
15
2
0  t
P  1011 mbar (1nPa)
384,400 km
Near earth outer space:
P  106 mbar (100m Pa)