Diapositive 1

Download Report

Transcript Diapositive 1

A 0.13um CMOS Rad-hard proven technology with
associated mixed mode circuit design approaches
for space applications
Laurent Dugoujon (1), Constantin Papadas (2) and Bill Sinnis (2)
1) ST Microelectronics, 12 rue Jules Horowitz, B.P. 217, 38019
Grenoble Cedex, France
2) Integrated Systems Development S.A., Atrina Center, Building
B, 32 Kifisias Avenue, 15125 Marousi, Greece.
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
INTRODUCTION
New Telecommunications Satellites must offer:
• High data throughput
• Uninterrupted Service
• High Reliability
• Competitive costs
- The usage of Deep-Sub-Micron technology is now mandatory
to keep-up with US manufacturers -
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
KEY FUNCTIONS
Some functions are « key » to succes:
• Broadband Analog-Digital Converters: ADC & DAC
• High Speed Serial Links
• Digital Processing ASICs
- For these key components, only modern technology nodes
(<=0.25um) can fulfill the specifications -
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
TECHNOLOGY / FUNCTIONS
0.25um
0.13um
0.09um
DC1-2GHz 1-4GHz
1GHz
Mixed
HSSL
Analog Analog &
functions Digital
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
RH at PROCESS LEVEL
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
0.13µm Technology Platforms
Digital/Analog/RF convergence
HCMOS9
Core Process
HCMOS9i
4 or 6 Cu Dual Damascene Metal levels
0.41µm pitch metallization, Low k dielectric
HCMOS9DRAM
0. 39/ 0.53µm²
HCMOS9 A
BICMOS9
HCMOS9 SOI
HCMOS9 SiGe
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
HCMOS9 : Device list
MOSFETs
 1.2V HS 0.13µm CMOS (GO1 : 20A)
 1.2V LL 0.13µm CMOS (GO1 : 20A)
 2.5V CMOS (GO2 : 50A)
 2.5V HS CMOS (GO2 : 50A) (option)
 DRIFT N & P MOS transistors
(GO2:50A)
 NMOS SRAM (option)
CAPACITORS
 2 fF/µm² MIM capacitor (option)
 N+Poly/NWell capacitor (GO2:50A)
 P+Poly/PWell capacitor (GO2:50A)
 Interdigited Metal fringe capacitor
(MOM)
 Intermetal capacitor (MEM)
JUNCTION DIODES
N+/Pwell
 P+ /Nwell

RESISTORS
 Silicided N+ Poly; 10 Ohm/sq
 Unsilicided p+ Active; 135 Ohm/sq
 Unsilicided P+ Poly; 320 Ohm/sq
 Hipo; 1KOhm/sq (option)
 Unsilicided N+ Poly; 110 Ohm/sq
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
ST 130 & 90nm SRAMs are invulnerable to thermals
7Li
Low Energy
Neutron
Recoil
0.84 MeV
 - particle
1.47 MeV
10B
Fissio
n
 Highest concentration of Bo10 in today’s IC :
104
103
102
101
100
10-1
10-2
10-3
BORON 10
Tungsten
Titanium
Arsenic
Copper
Nitrogen
Aluminum
Silicon
Phosphorus
Oxygen
Boron-11
Neutron Cross-section (barns)
 Thermal neutrons highly interact with Boron10
borophosphosilicate glass (BPSG) film : not used in ST technologies
 Test on 130nm ST SRAMs at ILB, Paris : no SEU with a fluence
>1011n/cm2
 Test on a 90nm SRAMs at TRIUMF, Vancouver : no SEU variations with &
without Cadnium shielding
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
TID characterizations for 130nm MOSFETs &
(r)SRAMs
 Linear transistors 130nm (thin oxide) @ 30 MradSi - Tests
performed by CERN
 Threshold voltage shift < 10 mV : negligible
 Subthreshold swing variations : negligible
 Transconductance degradation of less than 10%
 Linear transistors 130nm (thick oxide) @ 30 MradSi - Tests
performed by CERN
 Threshold voltage shift < 35 mV : negligible
 Transconductance degradation of less than 10%
 Two 130nm 1Mb SRAMs, standard and rSRAM tested at BNL @ 1
MradSi :
 No bit error detected for each memory cut at initial and after each exposure
step (0, 100, 500 and 1000Krads(Si))
 Full functionality verified for the 2 cuts after being exposed to 1Mrad(Si).
These experimental results confirm the strong robustness of ST 130nm
MOSFETS, SRAM and robust SRAMs
CERN test report : “specifications should be met in terms of radiation requirements
WITHOUT using enclosed transistors (with obvious benefits)”
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
Responses to HI of 130nm regular & robust rSRAMs
Cross-section per bit [cm2]
Experiments performed at the BNL, NY, 01/2004
1.E-06
Std SRAM
1.E-07
rSRAM ref.
1.E-08
Standard SRAM
rSRAM (Cap.1)
rSRAM (Cap.2 > Cap.1)
1.E-09
0
5
10 15 20 25 30 35 40 45 50 55 60
LET [MeV/cm2.mg]
The rSRAM has both a lower LETth (x10) & X-section at sat. (/3) than the regular SRAM
No SEL recorded up to 80 MeV/cm2.mg for all tested SRAMs
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
RH at LIBRARY LEVEL
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
RHBD: Library Level
NAND Gate
Standard
AMICSA’2006
Guardbands
IIIntegrated
SD Systems Development S.A.
RHBD: Library Level
AMICSA’2006
Or …
• Trench capacitors
• Drain degeneration by drain contact distance
• Silicide protect
• Salicide protect
IISD
Integrated Systems Development S.A.
RHBD: Library Level
Redundant
Latch
Layout
Standard (6 xtors)
Redundant (14
xtors)
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
RHBD: Library Level
D
Q1
Latch1
>
QN1
Q
Reset
Q2
Latch2
>
Vote
QN2
Reset
CK
Q3
Latch3
>
QN
QN3
Reset
Triple Voting Scheme
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
RH at DESIGN LEVEL
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
RHBD: Architecture Level
Memory
Core
Addl.
Cols.
Error Code
Correction
(eg Hamming)
EDAC
ECC
Flag
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
rSRAM validation Testchip in 130 nm
Content :
•SRAM Standard 1Mb
memcell 2.5 µm2
•SRAM Standard 1Mb
memcell 2.5 µm2 with Triple Well
•rSRAM 1Mb
robust memcell 2.5 µm2
•rSRAM 1Mb
robust memcell 2.5 µm2 - ver. 2
(lower capacitor value)
1Mb
SRAM
1Mb
SRAM
1Mb
rSRAM
1Mb
rSRAM
•50x164Kb
robust memcell 2.5 µm2
Package :
•PBGA 27x27 276+16
AMICSA’2006
scribes
PLL, BIST, Laser Fuses
Chip micrograph
IIIntegrated
SD Systems Development S.A.
Relative perf between a standard, robust and ECC SRAM
130nm Single-Port SRAM - 32kx32 HCMOS9GP-LL, typical corner, 1V2, room temp.
90nm Single-Port SRAM - 8kx32 CMOS90-GP, typical corner, 1V, room temp.
SRAM
Specifications
SRAM ECC1,2
 in %
rSRAM
 in %
tcycle (ns)
4.2
1.50
+5 %
+1%
0%
taa (ns)
3.7
0.95
+5 %
+1%
one cycle later
area (mm2)
3.6
0.4
0
0
+25%
power (µW/MHz)
160
50
+20 %
+5%
+40 %
leakage (uA, WC)
1016
400
0
0
+20-25%
Standard
eDRAM option
Standard
Wafer cost
1
1.10
1
Die cost
1
1.10
>1.25
Process
(10Mb/ 32-bit word)
Note1 : pipeline architecture, Note2 : penalty induced by the additional parity bits (= +7 bits for a 32 bit-word ) and combinatonial logic
(XOR stage)
rSRAM offers lower die cost than ECC with a similar robustness
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
Alpha & neutron responses of the 130nm rSRAM
Experiments performed at Los Alamos and Crolles, 2003
Alpha accelerated results @ 1.2V
Neutron accelerated results @ 1.2V
Nominal Conditions
(1.2 V, room temp)
SRAM standard
cell area=2.5 µm2
rSRAM
cell area=2.5 µm2
Alpha fail rate
37,000 fails/min
0 after 23h, Th232
Neutron fail rate
1,195 fails after 6 h
8 fails after 6 h
Total SER FIT/Mb
1475 ± 6
6±4
ST rSRAM provides a robustness enhancement by ×250 :
AMICSA’2006
SER < 10 FIT/Mb @ 1.2 V + full immunity @ 1.32 V
IIIntegrated
SD Systems Development S.A.
RHBD: Library Mapping (synthesis)
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
PLL
Technology: 0.13um
Locking Frequency: 620MHz
CtoC Jitter: 17ps
Power Consumption: 340mW
Sense Amplifier
Technology: 0.13um
Bandwidth: 4GHz
Gain: 12db
Power Consumption: 15mW
AMICSA’2006
LOG
O
TAP0
Robust Designs: PLL and Sense Amplifier
PLL
Sense
amplifier
UWBTBA
IIIntegrated
SD Systems Development S.A.
Robust Designs: 64x1bit ADC
64x1bit-ADC
Technology: 0.13um
Sampling Frequency: 3GHz
Power Consumption: 500mW
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
Robust Designs: 10bit DAC
10bit-DAC
Technology: 0.13um
Topology: Current Steering
Sampling Frequency: 15MHz
Signal bandwidth~2.5MHz
ENOB: 8.73bits
Imax=1.4mA
Noise: +/- 2LSB
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
Robust Designs: 10bit ADC
10bit-ADC
Technology: 0.13um
Topology: Interleaved SAR
Sampling Frequency: 1.3GHz
Consumption: 400mW
ENOB: in test
Noise: in test
AMICSA’2006
IIIntegrated
SD Systems Development S.A.
CONCLUSION
It is the CONJUNCTION of 3 main levels of efforts which can
maximize the Radiations performances:
• Intrinsic good choices at Si process level (materials,...)
• usage of validated mitigation techniques (libraries,
options,...)
• design for Rad-hard (architecture, registers,...)
We are able to manage all these levels with additional knowhow from space industry trough contractual projects
AMICSA’2006
IIIntegrated
SD Systems Development S.A.