Transcript Slide 1

Status of bb decay
Ruben Saakyan
UCL
Outline
 Motivation
 bb decay basics
 Results so far
 Current experiments
 Future projects and sensitivity
Motivation
Neutrino Mixing Observed !
 e    Ue1 Ue2 Ue3  1  
     U1 U 2 U 3  2  
  
   
     U1 U 2 U 3  3  
From KamLAND, solar  and atmospheric 
 0.5
0.87
0 


U  0.61 0.35 0.71


 0.61 0.35 0.71
VERY approximately
2
mLMA
 5 105 eV 2  (7 meV )2
2
matm
 2.5 103 eV 2  (50 meV )2
Neutrino MASS
What do we want to know?
• Relative mass scale (-osc)
• Mass hierarchy (-osc and bb)
• Absolute mass scale
(bb +3Hb+cosmology)
mmin ~ 0 - 0.01 eV
mmin ~ 0.03 - 0.06 eV
Dirac or Majorana
 
preferred by
 
  theorists
 
 
 (see-saw)
  or 
  
 
 
 
Only from bb
e
1
2
3
Ue12
Ue22
Ue32
From -osc
Mixing
bb Decay Basics
276
As
0+
76
Ge
Qbb
Endpoint
Energy
0+
bb
2+
0+
76
Se
In many even-even nuclei, b decay is
energetically forbidden. This leaves bb
as the allowed decay mode.
bb Decay Basics
2bb
and
0bb

L = 2
e
e
p
n
n
p


e
n
p
n
e
p
• 2bb – Allowed in SM second order weak process. Observed for
several isotopes
• 0bb – Requires massive Majorana neutrinos (even in presence of
alternative mechanisms)
bb Decay Basics. Energy Spectrum
76Ge
example
Two Neutrino Spectrum
Zero Neutrino Spectrum
1% resolution
(2 ) = 100 *
(0 )
0.0
0.5
1.0
1.5
Sum Energy for the Two Electrons (MeV)
2.0
Qbb
Endpoint
Energy
bb Decay Basics. Rates
2
1/ 2
1
2
T (0  0 )   G ( E0 , Z ) M
0
1/ 2
+
+
1
0
T (0  0 )   G ( E0 , Z ) M
+
+
0 2
2 2
 m 2
G – phase space, exactly calculable; G0 ~ Qbb5, G2 ~ Qbb11
M – nuclear matrix element. Hard to calculate.
Uncertainties factor of 2-10 (depending on isotope)
Must investigate several different isotopes!
<m> is effective Majorana neutrino mass
Isotopes of Interest
48Ca, 76Ge, 100Mo, 150Nd,136Xe, 116Cd, 96Zr, 82Se,130Te
Effective Majorana Mass
 m  
2
2
N
U
2
ei
mi 
i
U
2
ei
i
<mee>
Ue32 m3
min

2
N
Ue12 m1
Ue22 m2
b
i
e mi
Physics Reach
Normal Hierarchy
Inverted Hierarchy
Degenerate
m1 ~ 0 meV
~55 meV
M ≥ 100 meV
m2 ~ 7 meV
~55 meV
M
m3 ~ 55 meV
~0 meV
M
<mbb> ~ 5 meV
28 or 55 meV
M/2 or M
Solar + KamLAND + Atmospheric (Ue3~ 0)
2
2
mbb  0.5 m1 + 21 0.866
2
m12 + m21
The Experimental Problem
( Maximize Rate/Minimize Background)
Natural Activity:
(238U, 232Th) ~ 1010 years
Target: (0bb) > 1025 years

Detector
Shielding
Cryostat, or other experimental support
Front End Electronics
etc.
+
Cosmic ray induced activity
An Ideal Experiment
 bE 

m  
 Mtlive 
m 
1
Mtlive
1
4
 Large Mass (0.1t)
BG  0
 Good source radiopurity
 Demonstrated technology
 Natural isotope
BG  0
 Small volume, source = detector
 Tracking capabilities
 Good energy resolution or/and Particle
 All requirements can NOT be
satisfied
 Red – must be satisfied
ID
 Ease of operation
 Large Q value, fast bb(0)
 Slow bb(2) rate
 Identify daughter
 Event reconstruction
 Nuclear theory
Results from previous experiments
<m> < 0.35 – 1.0 eV
mscale ~ 0.01 – 0.05 eV from
oscillation experiments
Hieldeberg-Moscow (Gran Sasso)
(Spokesperson: E. Klapdor-Kleingrothaus, MPI)
<m> = 0.4 eV ???
• 5 HPGe 11 kg, 86% 76Ge
• E/E 0.2%
• >10 yr of data taking
<m> < 0.3 – 0.7 eV
If combine HM and IGEX
Current Experiments
NEMO-3
(Tracking calorimeter)
See Jenny’s talk
CUORICINO
(bolometer)
CUORICINO Detector (Gran Sasso)
(Milano LNGS, Firenze, Berkeley, S. Carolina)
~ 14 kg 130Te
• High natural abundance
of 130Te – 34% (no enrichment)
• Good E/E ~0.3% at 2.529 MeV
Spokesperson: E. Fiorini, Milano
CUORICINO Status
•2.26 kg×yr (since Feb’03)
• BG  0.2 c/keV/kg/yr
T1/2(0) > 5×1023 yr (90%)
NEMO-3
<m> < 0.8 – 3.2 eV
<m> < 0.9 – 2.1 eV
(Preliminary - TAUP’03, September, Seattle )
A Great Number of Proposals
(Some may start taking data in 2008-2010)
COBRA
Te-130,Cd-116
10 kg CdTe semiconductors
DCBA
Nd-150
20 kg Nd layers between tracking chambers
SuperNEMO
Se-82, Various
100 kg of Se-82(or other) foil
CAMEO
Cd-116
1 t CdWO4 crystals
CANDLES
Ca-48
Several tons CaF2 crystals in liquid scint.
CUORE
Te-130
750 kg TeO2 bolometers
EXO
Xe-136
1 ton Xe TPC (gas or liquid)
GEM
Ge-76
1 ton Ge diodes in liquid nitrogen
GENIUS
Ge-76
1 ton Ge diodes in liquid nitrogen
GSO
Gd-160
2 t Gd2SiO5:Ce crystal scint. in liquid scint.
Majorana
Ge-76
500 kg Ge diodes
MOON
Mo-100
Mo sheets between plastic scint., or liq. scint.
Xe
Xe-136
1.56 t of Xe in liq. Scint.
XMASS
Xe-136
10 t of liquid Xe
COBRA, SuperNEMO
See later talks by Kai Zuber, Ruben Saakyan
Cryogenic Underground Observatory for Rare
Events - CUORE
Berkeley
Firenze
Gran Sasso
Insubria (COMO)
Leiden
Milano
Neuchatel
U. of South Carolina
Zaragoza
Spokesperson
Ettore Fiorini
Milano
CUORE
CUORICINO×20  270 kg 130Te
(~ 750 kg natTe)
CUORICINO
BG 
 0.001c / keV / y / kg
200
Compact: 70×70×70 cm3
5 yr in Gran Sasso: <m> ~ 0.04 eV
The Majorana Project
Duke U.
North Carolina State U.
TUNL
Argonne Nat. Lab.
JINR, Dubna
ITEP, Moscow
New Mexico State U.
Pacific Northwest Nat. Lab.
U. of Washington
LANL
LLNL
U. of South Carolina
Brown
Univ. of Chicago
RCNP, Osaka Univ.
Univ. of Tenn.
Co-Spokespersons
Frank Avignone
Harry Miley
Majorana
 0.5 ton of 86% enriched
76Ge
 Very well known and


5 yr in a US undegr lab
<m> ~ 0.03 eV


successful technology
Segmented detectors
using pulse shape
discrimination to improve
background rejection.
Prototype ready to go this
autumn/winter. (14
crystals, 1 enriched)
100% efficient
Can do excited state
decay.
GErmanium NItrogen Underground
Setup - GENIUS
MPI, Heidelberg
Kurchatov Inst., Moscow
Inst. Of Radiophysical Research, Nishnij Novgorod
Braunschweig und Technische Universität, Braunschweig
U. of L'Aquila, Italy
Spokesperson
Int. Center for Theor. Physics, Trieste
Hans Klapdor-Kleingrothaus
JINR, Dubna
MPI
Northeastern U., Boston
U. of Maryland, USA
University of Valencia, Spain
Texas A & M U.
GENIUS
GENIUS
 1 ton, ~86% enriched
76Ge
 Naked Ge crystals in




LN
Very little material near
Ge.
1.4x106 liters LN
40 kg test facility is
approved.
100% efficient
5 yr in Gran Sasso: <m> ~ 0.02 eV
Enriched Xenon Observatory EXO
U. of Alabama
Caltech
IBM Almaden
ITEP Moscow
U. of Neuchatel
INFN Padova
SLAC
Stanford U.
U. of Torino
U. of Trieste
WIPP Carlsbad
Spokesperson
Giorgio Gratta
Stanford
EXO
 10 ton, ~70% enriched
136Xe
 70% effic., ~10 atm gas TPC





or LXe chamber
Optical identification of Ba
ion.
Drift ion in gas to laser path
or extract on cold probe to
trap.
100-200-kg enrXe prototype
(no Ba ID)
Isotope in hand
5 yr in a US underground lab
<m> ~ 0.05 eV
Future bb projects sensitivity
(5 yr exposure)
Experiment
Source and
Mass
Sensitivity
to
T1/2 (y)
Sensitivity to
<m> (eV)*
Majorana
76Ge,
500kg
3×1027
0.03 – 0.07
GENIUS
76Ge.
1000kg
5×1027
0.02 – 0.05
CUORE
130Te,
2×1026
0.04 – 0.17
8×1026
0.05 – 0.12
2×1026
0.04 – 0.11
750kg(nat)
EXO
136Xe
1 ton
SuperNEMO
82Se(or other)
100 kg
*
5 different latest NME calculations
Summary
 Great progress over past decade:
<m> < 0.3-1 eV
 Oscillation expts: at least one neutrino  0.05 eV
 Next generation bb experiments will reach
0.03 – 0.1 eV (good if inverted hierarchy)
 Start in ~2008
 The next after next generation will address
 0.01 eV
 Nuclear theory input needed
 Exciting time for bb decay
Things to read…
S.R. Elliott, P. Vogel,
Annu. Rev. Nucl. Part. Sci. 52(2002)
hep-ph/0202264
BACKUP SLIDES
The Controversy.
20
16
15
14
Locations of
claimed peaks
10
10
Counts
Counts
12
8
6
4
5
2
0
2000
2000
2020
2040
2060
Energy (keV)
0
2020
2040
2060
2080
Mod. Phys. Lett. A16, 2409 (2001)
Energy (keV)
If one had to summarize the controversy in a short statement:
Consider two extreme background models:
1. Entirely flat in 2000-2080 keV region.
2. Many peaks in larger region, only bb peak in small region.
These 2 extremes give very different significances for peak at 2039 keV.
KDHK chose Model 2 but did not consider a systematic uncertainty
associated with that choice.
2080