Transcript Slide 1
Probing neutrinos with 0nbb decay Ruben Saakyan UCL Swansea 31 January 2006 Preview Neutrino oscillations, 0nbb decay and neutrino mass bb decay basics Running experiments Status of “evidence” Future projects Why study neutrinos? Essential part of the building blocks of matter and the Universe Fundamental for understanding deep principles of nature In Standard Model assumed to be massless We now know they have non-zero mass Neutrino mass – window beyond Standard Model Neutrino oscillations Simple case: 2n vacuum oscillations νμ cosθ sinθ ν1 ν sinθ cosθ ν 2 e Recall that ν i t ν i 0e iE i t Consider = 45 nm ne nm Oscillations mn 0 Δm 2 L P(ν μ νe ) sin 2θ sin ( 1.27 ) E 2 2 from 2n to 3n oscillations 0 0 1 0 0 c13 0 s13 U e1 U e 2 U e 3 c12 s12 0 1 U li U μ1 U μ 2 U μ3 s12 c12 0 0 c23 s23 0 1 0 0 1 0 U 0 1 0 s23 c23 0 0 e iδ s13 0 c13 τ1 Uτ 2 Uτ 3 0 where cij cos ij , and sij sin ij PMNS matrix (compare CKM matrix for quarks) PMNS – Pontecorvo-Maki-Nakagawa-Sakata CKM – Cabibbo-Kobayashi-Maskawa First evidence for oscillations from atmospheric neutrinos SuperKamiokande detector (Japan) Solar neutrinos SNO – Sudbury Neutrino Observatory Neutrino oscillation summary Neutrino Mixing Observed ! ne Ue1 nm Um1 n U1 Ue2 Um 2 U 2 Ue3 n1 Um 3 n2 U 3 n3 From KamLAND, solar n and atmospheric n 0.5 U 0.61 0.61 VERY approximately 0.87 0 0.35 0.71 0.35 0.71 Dm2LMA ≈ 5×10-5 eV2 = (7 meV)2 Dm2atm ≈ 2.5×10-3 eV2 = (50 meV)2 at least one neutrino with mi > 0.05 eV! Neutrino mass. Things we want to know. Relative mass scale (n-oscillations) Mass hierarchy (n-oscillations, 0nbb) CP-violation (n-oscillations, 0nbb Absolute mass scale (0nbb,3H-decay, cosmology) Dirac or Majorana particle (0nbbonly) DL 0? Access to GUT scale (see-saw mechanism) Important consequences for particle physics, cosmology, nuclear physics Theorists dream: n is Majorana particle MR mL See-Saw: explains smallness of mn mD2 mL MR M R GUT scale Majorana mass Leptogenesis: may shed light on baryon asymmetry of Universe Standard Model 2nbb Decay 276 As Excited state decays possible 0+ 76 Ge Qbb 2n 1/ 2 1 2n T (0 0 ) G ( E0 , Z ) M 2n 2 0+ bb 2+ 0+ 76 Phase space ~Qbb11 |M| - NME, very hard to calculate but in case of 2nbbcan be measured experimentally 2nbb has been observed for 10 nuclei Se NME In many even-even nuclei, b decay is energetically forbidden. This leaves bb as the allowed decay mode. 0nbb Decay bb spectra. Ee1 + Ee2 DL = 2! 0n 1/ 2 1 0n T (0 0 ) G ( E0 , Z ) M Phase space ~Qbb5 0n 2 mn 2 NME But there are other mechanisms which could generate 0nbb (V+A, Majoron emission, leptoquarks, extra-dimensions, SUSY, H--…) Qbb Effective Majorana Mass (inverted hierarchy case) mn 2 2 N U 2 ei mi i Ue3 m3 min U 2 ei i <mee> 2 2 N Ue12 m1 Ue22 m2 b i e mi Isotopes Best candidates: Qbb2.038 MeV 48Ca, Q 4.272 MeV bb 82Se, Q 2.995 MeV bb 100Mo, Q 3.034 MeV bb 116Cd, Q 2.804 MeV bb 130Te, Q 2. 528 MeV bb 136Xe, Q 2.48 MeV bb 150Nd, Q 3.368 MeV bb 76Ge, High Qbb is important (G0n ~ Qbb5, G2n ~ Qbb11) In most cases enrichment is a must Different isotopes must be investigated due to uncertainties in NME calculations ! Recent developments in NME calculations Rodin, Faessler, Simcovic, Vogel, PRC 68 (2003) 044303 nucl-th/0503063. Error bars are from experimental errors on T1/2n2 Workshop on NME in Durham, May 2005 K. Zuber, nucl-ex/0511009 gpp fixed from experimentally measured M2n Different calculations converge Underlines the importance of 2nbb precise measurements The Experimental Problem ( Maximize Rate/Minimize Background) Natural Activity: (238U, 232Th) ~ 1010 years Target: (0nbb) > 1025 years Detector Shielding Cryostat, or other experimental support Front End Electronics etc. + Cosmic ray induced activity Extremely radiopure materials + underground Lab Experimental approaches to direct searches Two approaches for the detection of the two electrons: e- e- e- detector source e- detector Source Detector Source Detector (calorimetric technique) scintillation cryogenic macrocalorimeters (bolometers) solid-state devices gaseous detectors high efficiency and energy resolution scintillation gaseous TPC gaseous drift chamber magnetic field and TOF event reconstruction bb signature A History Plot Current best limit comes from 76Ge experiments: Heidelberg-Moscow and IGEX <mn> < 0.35 – 0.9 eV mscale ~ 0.05 eV from oscillation experiments Hieldeberg-Moscow (Gran Sasso) First claim (end 2001) <mn> = 0.4 eV ??? • 5 HPGe 11 kg, 86% 76Ge • DE/E 0.2% • >10 yr of data taking <mn> < 0.3 – 0.7 eV If combine HM and IGEX Heidelberg claim. Recent developments 214Bi unknown hep-ph/0403018, NIMA, Phys. Rev… Data analysed for 1990 – 2003 0nbb 214Bi • Data reanalyzed with improved binning/summing • Peak visible • Effect reclaimed with 4.2s • <m> = (0.2 – 0.6) eV, 0.4 eV best fit <m> = (0.1 – 0.9) eV (due to NME) Personal view 71.7 kgyr • Looks more like 2.5s of effect •214Bi line intensities do not match Current Experiments NEMO-3 (Tracking calorimeter) CUORICINO (bolometer) Until ~2008 results are only from these two Sensitivity ~ 0.2 eV – 0.6 eV Today:CUORICINO Located in LNGS, Hall A CUORE R&D (Hall C) CUORE (Hall A) Cuoricino (Hall A) Today: CUORICINO 2 modules, 9 detector each, crystal dimension 3x3x6 cm3 crystal mass 330 g 9 x 2 x 0.33 = 5.94 kg of TeO2 40.7kg total heat bath Thermal sensor 11 modules, 4 detector each, crystal dimension 5x5x5 cm3 crystal mass 790 g 4 x 11 x 0.79 = 34.76 kg of TeO2 absorber crystal Incident particle Today:CUORICINO • Operation started early 2003 • BG = 0.19 counts/kev/kg/y • DE/E = 4 eV @ 2 MeV mn < 0.3 – 1.6 eV (all NME) Today: NEMO-III AUGUST 2001 bb decay isotopes in NEMO-3 detector bb2n measurement 116Cd 405 g Qbb= 2805 keV 96Zr 9.4 g Qbb= 3350 keV 150Nd 37.0 g Qbb= 3367 keV 48Ca 7.0 g Qbb= 4272 keV 130Te 454 g Qbb= 2529 keV 100Mo 6.914 kg Qbb= 3034 keV 82Se 0.932 kg Qbb= 2995 keV bb0n search natTe 491 g Cu 621 g External bkg measurement (All enriched isotopes produced in Russia) bb events selection in NEMO-3 Typical bb2n event observed from 100Mo Transverse view 100Mo Run Number: 2040 Event Number: 9732 Date: 2003-03-20 Vertex emission foil Longitudinal view 100Mo foil Geiger plasma longitudinal propagation Vertex emission Drift distance Deposited energy: E1+E2= 2088 keV Internal hypothesis: (Dt)mes –(Dt)theo = 0.22 ns Common vertex: Scintillator PMT (Dvertex) = 2.1+ mm (Dvertex)// = 5.7 mm Trigger: > 150 keV Criteria1 PMT to select bb events: • 2 tracks with charge < 03 Geiger hits (2 neighbour layers + 1) • Internal hypothesis (external event rejection) • 2 PMT, each > 200 keV Trigger rate = 7 Hz• No other isolated PMT (g rejection) • PMT-Track association bb events: 1 event •every 1.5 minutes No delayed track (214Bi rejection) • Common vertex Latest results, 100Mo PRL 95, 182302 (005) T1/2 = 7.11 ± 0.02 (stat) ± 0.54 (syst) 1018 y, SSD mechanism! T0n > 4.6 1023 y , mn< 0.7-2.8 eV Strategy for future. An Ideal Experiment Large Mass (0.1t) bDE Good source radiopurity mn BG 0 Demonstrated technology Mtlive Natural isotope 1 Small volume, source = detector mn BG 0 Mtlive Tracking capabilities Good energy resolution or/and Particle ID Ease of operation Large Q value, fast bb(0n) Slow bb(2n) rate All requirements can NOT be Identify daughter satisfied Event reconstruction Red – must be satisfied Nuclear theory 1 4 A Great Number of Proposals DCBA Nd-150 20 kg Nd layers between tracking chambers SuperNEMO Se-82, Various 100 kg of Se-82(or other) foil COBRA CAMEO Te-130,Cd-116 Cd-116 CdTe semiconductors 1 t CdWO4 crystals CANDLES Ca-48 Several tons CaF2 crystals in liquid scint. CUORE Te-130 750 kg TeO2 bolometers EXO Xe-136 1 ton Xe TPC (gas or liquid) GEM Ge-76 1 ton Ge diodes in liquid nitrogen GERDA Ge-76 0.5-1 ton Ge diodes in LN2/LAr GSO Gd-160 2 t Gd2SiO5:Ce crystal scint. in liquid scint. Majorana Ge-76 500 kg Ge diodes MOON Mo-100 Mo sheets between plastic scint., or liq. scint. Xe Xe-136 1.56 t of Xe in liq. Scint. XMASS Xe-136 10 t of liquid Xe GERDA. 76Ge. Clean room lock Water tank / buffer/ muon veto Vacuum insulated copper vessel Liquid N/Ar Ge Array “Naked” 76Ge detectors in LN2/LAr Original idea from GENIUS (Klapdor) GERDA. 76Ge Phase I: collect 76Ge detectors from HM(11kg)+IGEX(8kg) 15kg[email protected] c/keV/kg/y sens-ty: 3·1025 y, 0.24-0.77 eV Confirm Klapdor with 5s OR rule out Phase II: increase to ~35-40 kg GERDA Phase I and Phase II approved BG < 10-3 c/keV/kg/y within 4 yr ~ 100 kgy 2·1026 y, 0.09-0.29 eV Phase III: 0.5 -1 ton Possible merge with Majorana >1027 y, ~ 0.03 eV- 0.09 eV Site: Gran Sasso Mostly European project CUORE. 130Te New 130Te experiment, evolution of CUORICINO Closely packed array of 988 bolometers at 10 mK 19 towers - 13 modules/tower - 4 detectors/module M = 741 kg ~ 265 kg of 130Te Compact structure, ideal for active shielding Site: Gran Sasso Euope +US Each tower is a CUORICINO-like detector Special dilution refrigerator CUORE Current CUORICINO background 0.2 c/keV/y/kg Two scenarios: I: BG down to 0.01 c/keV/y/kg II: BG down to 0.001 c/keV/y/kg Sensitivity I: 2×1026 y, 0.03 – 0.1 eV Sensitiviry II: 6.5×1026 y, 0.017 – 0.06 eV Approved 5 year exposure SuperNEMO (UK, France, Russia, Spain, US, Czech Rep…) Evolution of NEMO 3 same technique, larger mass, lower background better efficiency, higher energy resolution 82Se experiment (high Qbb, slower 2n rate) as baseline. Basic points: Planar geometry Modular structure Isotope Mass 100-200 kg Instrumentation ~20 submodules, 40,000 – 60,000 tracking channels ~ 5,000 – 20,000 PMTs (depending on the design) Sensitivity T1/2: 2 x1026 y Mbb < 40 - 70 meV SUPERNEMO. Tracking calorimeter source tracker calorimeter 1m 4m 5m Top view Side view Majorana. Mostly US Sensitivity: T1/2 ~ 3×1027 y <mn> ~ 0.03 – 0.09 eV 76Ge 0.5 ton of 86% enriched 76Ge Very well known and successful technology Segmented detectors using pulse shape discrimination to improve background rejection. Prototype ready (14 crystals, 1 enriched) Possible merger with GERDA at later stage Mostly US EXO. 136Xe 1-10 ton, ~80% enriched 136Xe Gas TPC or LXe chamber Optical identification of Ba ion. Drift ion in gas to laser path or extract on cold probe to trap. 200-kg enrXe prototype (no Ba ID) being built Isotope in hand Sensitivity with 1 ton: 8×1026 y 0.04 – 0.08 eV Cadmium-Telluride O-neutrino double-Beta Research Apparatus. COBRA • CdTe or CdZnTe semiconductor detectors • Good DE/E • Two isotopes 116Cd and 130Te • Operate at room temperature • New approach Sussex Oxford Dortmund Warwick Next generation experiments Experiment Source and Mass Sensitivity to T1/2 (y) Sensitivity to<mn>(eV) GERDA/Majorana 76Ge, 500kg 3×1027 0.03 – 0.09 CUORE $30M 130Te, 750kg(nat) 2×1026 EXO $50M-100M 136Xe 8×1026 0.04 – 0.08 SuperNEMO $40M 82Se(or other) (1-2)×1026 0.04 – 0.08 $50M-100M 0.03 – 0.1 1 ton 100 kg Plan to reach this sensitivity by ~2015 A. Giulliani, 1st Astroparticle EU town meeting Munich, 23-25 Nov S[eV] Neutrino mass scale Expected limits from 0n-DBD PLANCK + larger surveys Mb [eV] KATRIN, MARE S I N G L E b KDHK claim Mbb [eV] inverted hierarchy will be soon attacked Strumia-Vissani hep-ph/0503246 degeneracy will be deeply probed (HM,CUORICINO, NEMO3) CUORE, GERDA, SUPERNEMO, ... C O S M O L O G Y D O U B L E b Concluding Remarks Very exciting time for neutrino physics in general and 0nbb in particular From oscillations: positive signal is a serious possibility “Good value”: ~$50M for great potential scientific gain At least one measurement which must be done but can not be done by any other approach (nature of n mass) Several experiments with different isotopes are needed (recall NME uncertainties)