Transcript Document
III. Neutrinos • Open questions in physics • : mechanism & EFT New “Periodic Table” Not physical states Courtesy: R.D. McKeown Missing Solar Neutrinos… Courtesy: R.D. McKeown Neutrino Oscillations: What We’ve Learned & What’s Unknown The status of the present knowledge of the neutrino oscillation phenomena is schematically depicted in this slide. Three quantities are unknown at present: a) The mass m1 b) The angle q13 c) Whether the normal or inverted hierarchy is realized. Courtesy: P. Vogel Neutrino Masses and Mixing: Scales Courtesy: R.D. McKeown Maki – Nakagawa – Sakata Matrix Future Reactor Experiment! CP violation Courtesy: R.D. McKeown The Mass Puzzle Familiar light neutrino “Seesaw mechanism” L R mD Very heavy neutrino mD L M R m D2 m m D M M Courtesy: R.D. McKeown The Mixing Angle Puzzle Why so different??? Courtesy: R.D. McKeown Open Questions • What is the absolute value of m ? Why is m so tiny ? • What is the mass hierarchy ? • Is the neutrino its own antiparticle? • What is q13 ? • Do neutrinos violate CP? • How do neutrinos affect/reflect astrophysical phenomena ? -Decay: LNV? Mass Term? Dirac Majorana EFF & m Long See-saw baseline neutrino mechanism spectrum -decay ? H Theory Challenge: matrix e e elements+ mechanism H MU ek mk e2i 1000 EFF L R GERDA L Effective Mass (meV) 100 Degenerate CUORE Inverted Leptogenesis 10 e Normal QuickTime™ and a TIFF (Uncompressed) decompressor QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture. 1 2 to see this picture. Ue1are = needed 0.866 m s ol = 70 meV Ue2 = 0.5 m 2 atm = 2000 meV Ue3 = 0 u 2 2 0.1 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 Lepton Asym -> Baryon Asym Normal Inverted EXO Majorana ? 1 10 100 Minimum Neutrino Mass (meV) 2 mW 1000 W M AZ,N d e u u d W e W k e˜ e 0 u AdZ 2,N 2 d e˜ Majorana or Dirac Or equivalently, is the total lepton number conserved? Courtesy: P. Vogel & Lepton Number Violation Whatever processes cause , its observation would imply the existence of a Majorana mass term: Schechter and Valle,82 e– ()R W e– 0 u d d u L W By adding only Standard model interactions we obtain ()R ()L Majorana mass term Courtesy: P. Vogel Decay vs. Decay virtual state of the intermediate nucleus virtual state of the intermediate nucleus Courtesy: P. Vogel Decay vs. Decay 30 x10 -6 2.0 dN/d(K e /Q) 1.5 20 ratio 1:106 10 0 0.90 1.00 1.10 Ke /Q 1.0 assumed 2% resolution 0.5 ratio 1:100 0.0 0.0 0.2 0.4 0.6 Ke /Q 0.8 1.0 Courtesy: P. Vogel -Decay: Theoretical Challenges Dirac Majorana Light M exchange: can we determine m Theory Challenge: matrix elements+Vogel mechanism et al: reduce QRPA spread by EFF 2 calibrating g to T2e2i m U PP m ek k k e Shell Model vs. QRPA Configs near Fermi surface Levels above Fermi surface u M W u u d e W d e e˜ e 0 d d e˜ u Decay Matrix Elements Why it is difficult to calculate the matrix elements accurately? Contributions of different angular momenta J of the neutron pair that is transformed in the decay into the proton pair with the same J. Note the opposite signs, and thus tendency to cancel, between the J = 0 (pairing) and the J 0 (ground state correlations) parts. Courtesy: P. Vogel The same restricted s.p. space is used for QRPA and NSM. There is a reasonable agreement between the two methods Decay Matrix Elements Full estimated range of M within QRPA framework and comparison with NSM (higher order currents now included in NSM) Courtesy: P. Vogel -Decay: Theoretical Challenges Dirac Majorana Mechanism: does light M exchange dominate ? Theory Challenge: matrix elements+ mechanism m EFF U ek mk e 2i 2 k e O(1) for L ~ TeV How to calc effects reliably ? How to disentangle H & L ? u M W u u d e W d e e˜ e 0 d d e˜ u -Decay: Mechanism & m 1000 signal equivalent to Degenerate 100 Effective Mass (meV) degenerate hierarchy Inverted 10 Normal Loop contribution to m of inverted hierarchy scale m Ue1 = 0.866 1 Ue2 = 0.5 m 2 2 atm s ol = 70 meV = 2000 meV 2 2 Ue3 = 0 0.1 2 1 3 4 5 6 7 2 3 4 5 6 7 10 100 Minimum Neutrino Mass (meV) 2 3 4 5 6 7 1000 -Decay: Theoretical Challenges Dirac Majorana Mechanism: does light M exchange dominate ? Theory Challenge: matrix Prezeau, R-M, Vogel: EFT elements+ mechanism e u m e EFF e 2i U ek m e k d O(1) for L ~ TeV How to calc effects reliably ? How to disentangle H & L ? u d e e e 2 N k N e e Does operator power counting M 0 W W u suffice? e˜ e˜ u n nu ˆ d d O0L p d d p u - decay Mechanism: EFT How do we compute & separate heavy particle exchange effects? e e u d AZ,N e e e u u AZ 2,Nd 2 4 quark operator: low energy EFT M W e u W d e e˜ d e 0 e˜ d u d u - decay in EFT I We have a clear separation of scales L L kF L-violating new physics Non-perturbative QCD Nuclear dynamics Effective Field Theory Systematically and effectively organizing our ignorance Power counting Scale separation LEFF GF 2 C (L ) p j L j Weak: MW Hadronic: L Nuclear: kF “Low-energy constants” parameterizing nonperturbative QCD Nuclear operators reflecting symmetries of short distance physics j - decay in EFT II e e e e e e N N N N N Tractable nuclear operators Systematic operator classification N - decay in EFT III e e e e e e N N K p 2 N N 1 K NN p N N K NNNN p K , KNN , KNNNN can be O ( p0 ), O ( p1 ), etc. 0 - decay in EFT IV Operator classification L(q,e) MWEAK L,N,e M HAD Spacetime & chiral transformation properties - decay in EFT V Operator classification L(q,e) = e.g. GF2 L MWEAK 14 c ˆ C ( ) O e e j j j j1 ab a b ˆ O1 qL qL qR qR - decay: a = b = + h.c. - decay in EFT VI Operator classification MWEAK ab a b ˆ O1 qL qL qR qR Chiral transformations: SU(2)L x SU(2)R qL LqL qR RqR expiqL PL R R 2 R L Parity transformations: qL - decay: a = b = + Oˆ1ab (3L , 3R ) qR ˆ O ˆ O 1 1 - decay in EFT VI Hadronic basis X Ra a , X La a , exp i 2 Chiral transformations 2 ˆ O1 ~ Tr X R X L ~ 2 F No derivatives K ~ O (p0) - decay in EFT VIII Hadronic basis ˆO q q q q q q q q 3 L L L L R R R R Chiral transformations 5L ,1R 1L ,5R 2 ˆ O3 ~ Tr D X L D X L L R ~ 2 F Two derivatives K ~ O (p2) - decay in EFT: Implications e u e d u W L(q,e) = d e˜ Oˆ1 (3L , 3R ) u e W N N Kˆ NN p1 e N K NNNN p 0 No WR - WL u Oˆ (3 h.c. L , 3R ) G d c ˆ C j () O j 1e j e L j1 2 F 14 RPV SUSY N O3 (5L , 1R ) (1L ,5R ) M e e d N e 2 e K p e 0 e˜ N e mixing R-M, WPrezeau, R - WL mix & Vogel Chiral properties of Oj++ determine p-dependence of K ,KNN , KNNNN Oˆ1 (3L , 3R ) K ~ O (p0) Oˆ 3 (5, 1) (1, 5) K ~ O (p2) An open question Is the power counting of operators sufficient to understand weak matrix elements in nuclei ? g 9 2 2 n n Oˆ 0L p p p , f 32 76Ge 76Se 0, ,9 0, ,5 2 52 2 An open question Is the power counting of operators sufficient to understand weak matrix elements in nuclei ? L ˆ O0 0, ,9 0, ,5 Oˆ 0L0 M fi ~ p0 0 2, 0 M fi ~ p 4 0, 2 Oˆ 0L2 M fi ~ p0 4, 0 L 4 ˆ O0 etc. e.g. M fi ~ p0 Oˆ 0L2 -Decay: Interpretation Dirac Majorana Theory Challenge: matrix If the existence of the decay elements+ mechanism is established: 1000 Degenerate 2 ek mk e 2i k • Which additional isotopes ? 100 Effective Mass (meV) EFF • What m mechanism? U Inverted e 10 Normal m Ue1 = 0.866 1 Ue2 = 0.5 m 2 2 atm s ol = 70 meV = 2000 meV Ue3 = 0 2 u 2 0.1 2 1 3 4 5 6 7 2 3 4 5 6 7 10 100 Minimum Neutrino Mass (meV) 2 3 4 5 6 7 1000 M W u u d e W d e e˜ e 0 d d e˜ u -Decay: Mechanism & m Be = (e)/(ee) Be = (Z,A) e- + (Z,A)) (Z,A) + (Z,A)) - SM extensions with low ( TeV) scale LNV Left-right symmetric model, R-parity violating SUSY, etc. possibly unrelated to m2 ** R = Be/Be» 10-2 R ~ O(a/~ 13 1 ** In absence of fine-tuning or hierarchies in flavor couplings. Important caveat! See: V. Cirigliano et al., PRL93,231802(2004) Lepton Flavor & Number Violation e Present universe Early universe a Y1 MEG: B->e ~ 5 x e AZ,N R= 10-14 AZ,N Mu2e: B->e ~ 5 x 10-17 Also PRIME B->e a 1 L B->e a 1 S ? ? log 10 ( / 0 ) Weak scale Planck scale Lepton Flavor & Number Violation 0decay e W u d MEG: LightBM ~ 5 x 10-14? !eexchange u e e M u W d Raidal, Santamaria; Cirigliano, Kurylov, RM, Vogel LFV Probes of RPV: ->e e AZ,N e˜ e˜ e u AZ,N d Heavy particle exchange ? -17 Mu2e: B ~ 5 x 10 !e ˜ 0 d e e lk11/ ~ 0.008 0.09 for formm TeV SUSY SUSY~~11TeV e e e e * Logarithmic enhancements of R Low scale LFV: R ~ O(1) * e GUT scale LFV: R ~ Oa Open Questions • What is the absolute value of m ? Why is m so tiny ? • What is the mass hierarchy ? • Is the neutrino its own antiparticle? • What is q13 ? • Do neutrinos violate CP? • How do neutrinos affect/reflect astrophysical phenomena ? Precision Neutrino Property Studies Neutrino Mass: Terrestrial vs Cosmological New interactions KATRIN, Mare WMAP & Beyond 1000 Degenerate Effective Mass (meV) 100 Inverted 10 Normal m Ue1 = 0.866 1 Ue2 = 0.5 m 2 2 atm s ol = 70 meV = 2000 meV 2 2 Ue3 = 0 0.1 Energy Density 1 10 2 3 4 5 6 7 2 3 4 5 6 7 100 Minimum Neutrino Mass (meV) 2 3 4 Power Spectrum 1000 5 6 7 Beacom, Bell, Dodelson Precision Neutrino Property Studies Mixing, hierarchy, & CPV Daya Bay U e1 U e2 U e 3 U U 1 U 2 U 3 U1 U 2 U 3 1 0 0 cos q13 0 ei CP sin q13 cosq12 sin q12 0 1 0 0 ia / 2 0 cosq 23 sin q23 0 1 0 0 sin q12 cos q12 0 0 e i CP ia / 2i cosq13 0 0 1 0 0 e 0 sin q 23 cosq 23 e sin q13 0 Double Chooz Long baseline oscillation studies: CPV? Normal or Inverted ? Mini Boone T2K Precision Neutrino Property Studies High energy solar s Solar Neutrinos DM + EWB Ice Cube EM vs. luminosity: MNSP KamLAND Borexino unitarity? Solar model? SNO+ LENS