Transcript Document

III. Neutrinos
•
Open questions in physics
•
: mechanism & EFT
New “Periodic Table”
Not physical
states
Courtesy: R.D. McKeown
Missing Solar Neutrinos…
Courtesy: R.D. McKeown
Neutrino Oscillations: What We’ve
Learned & What’s Unknown
The status of the
present knowledge
of the neutrino
oscillation phenomena
is schematically
depicted in this slide.
Three quantities are
unknown at present:
a) The mass m1
b) The angle q13
c) Whether the
normal or inverted
hierarchy is
realized.
Courtesy: P. Vogel
Neutrino Masses and Mixing: Scales
Courtesy: R.D. McKeown
Maki – Nakagawa – Sakata Matrix
Future Reactor
Experiment!
CP violation
Courtesy: R.D. McKeown
The Mass Puzzle
Familiar
light
neutrino
“Seesaw mechanism”
 L

 R 
mD
Very
heavy
neutrino
mD  L 
 
M  R 
m D2
m 
 m D
M
M
Courtesy: R.D. McKeown
The Mixing Angle Puzzle
Why so different???
Courtesy: R.D. McKeown
Open Questions
•
What is the absolute value of m ?
Why is m so tiny ?
•
What is the mass hierarchy ?
•
Is the neutrino its own antiparticle?
•
What is q13 ?
•
Do neutrinos violate CP?
•
How do neutrinos affect/reflect
astrophysical phenomena ?
-Decay: LNV? Mass Term?
Dirac
Majorana
EFF &
m
Long
See-saw
baseline
neutrino
mechanism
spectrum
-decay

?
H
Theory Challenge:
matrix


e
e
elements+ mechanism
H

 MU ek mk e2i
1000
EFF
L R
GERDA
L
Effective  Mass (meV)
100
Degenerate
CUORE

Inverted
Leptogenesis
10
e
Normal
QuickTime™ and a
TIFF (Uncompressed) decompressor
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
1
2
to see this picture.
Ue1are
= needed
0.866
m s ol = 70 meV
Ue2 = 0.5
m
2
atm
= 2000 meV
Ue3 = 0
 u
2

2

0.1
2
3
4
5 6 7
2
3
4
5 6 7
2
3
4
5 6 7
Lepton
Asym -> Baryon
Asym
Normal
Inverted
EXO
Majorana
?
1
10
100
Minimum Neutrino Mass (meV)
2
mW
 
1000


W

M

AZ,N
d 

e

u
u

d



W



e

W
k

e˜


e
0


u
AdZ  2,N  2
d


e˜ 

Majorana or Dirac
Or equivalently, is the total lepton number conserved?
Courtesy: P. Vogel
& Lepton Number Violation
Whatever processes cause , its observation would
imply the existence of a Majorana mass term:
Schechter and Valle,82
e–
()R
W
e–
0
u
d d
u
L
W
By adding only Standard model interactions we obtain
()R  ()L Majorana mass term
Courtesy: P. Vogel
Decay vs.  Decay
virtual state of the intermediate nucleus
virtual state of the intermediate nucleus
Courtesy: P. Vogel
Decay vs.  Decay
30
x10
-6
2.0
dN/d(K
e /Q)

1.5
20
ratio
1:106
10
0
0.90 1.00 1.10
Ke /Q
1.0
assumed 2%
resolution
0.5

ratio
1:100
0.0
0.0
0.2
0.4
0.6
Ke /Q
0.8
1.0
Courtesy: P. Vogel
-Decay: Theoretical Challenges
Dirac
Majorana
Light M exchange:
can we determine m
Theory Challenge: matrix
elements+Vogel
mechanism
et al: reduce
QRPA spread by
EFF
2
calibrating
g
to T2e2i
m

U PP m


ek
k
k
e
Shell Model vs. QRPA
Configs near
Fermi surface
Levels above
Fermi surface 
u
M
W





u

u
d


e
W

d

e

e˜


e
0


d
d


e˜ 


u
Decay Matrix Elements
Why it is difficult to calculate
the matrix elements accurately?
Contributions of different
angular momenta J of the
neutron pair that is transformed
in the decay into the proton pair
with the same J.
Note the opposite signs, and thus
tendency to cancel, between the
J = 0 (pairing) and the J 0
(ground state correlations) parts.
Courtesy: P. Vogel
The same restricted s.p. space
is used for QRPA and NSM.
There is a reasonable agreement
between the two methods
Decay Matrix Elements
Full estimated range of M within QRPA framework and comparison
with NSM (higher order currents now included in NSM)
Courtesy: P. Vogel
-Decay: Theoretical Challenges
Dirac
Majorana
Mechanism: does light M
exchange dominate ?
Theory Challenge: matrix
elements+ mechanism
m
EFF
  U ek mk e 2i
2
k
e
O(1) for L ~ TeV
How to calc effects reliably ? 
How to disentangle H & L ?

u
M
W





u

u
d


e
W

d

e

e˜


e
0


d
d


e˜ 


u
-Decay: Mechanism & m
1000
signal equivalent to
Degenerate
100
Effective  Mass (meV)
degenerate hierarchy
Inverted
10
Normal
Loop contribution to m of
inverted hierarchy scale
m
Ue1 = 0.866
1
Ue2 = 0.5
m
2
2
atm
s ol
= 70 meV
= 2000 meV
2
2
Ue3 = 0
0.1
2
1
3
4
5 6 7
2
3
4
5 6 7
10
100
Minimum Neutrino Mass (meV)
2
3
4
5 6 7
1000
-Decay: Theoretical Challenges
Dirac
Majorana
Mechanism: does light M
exchange dominate ?
Theory Challenge: matrix
Prezeau, R-M, Vogel: EFT
elements+ mechanism
e
u

m
e
EFF
e
2i
  U ek m
e
 k 
d

O(1) for L ~ TeV
How to calc effects reliably ? 
How to disentangle H & L ?


u
d

e
e
e

2



N

k
N


e

e
Does operator power counting
M
0
W

W
u suffice?
e˜
e˜ 
u n nu


ˆ



d




d








O0L

p
d
d
 




p
u
 - decay Mechanism: EFT
How do we compute & separate
heavy particle exchange effects?
e e
 
u
d 
AZ,N
e
e e
u

u
 


AZ  2,Nd 2

4 quark operator:
low energy EFT

M
W


e

u

W

d

e
e˜ 

d

e
  0
e˜ 

d
u
d
u
 - decay in EFT I
We have a clear separation of scales
L   L   kF
L-violating
new physics

Non-perturbative
QCD
Nuclear dynamics
Effective Field Theory
Systematically and effectively
organizing our ignorance
Power counting
Scale separation
LEFF
GF

2
 C (L  ) p
j
L 
j
Weak: MW
Hadronic: L

Nuclear: kF
“Low-energy constants”
parameterizing nonperturbative QCD
Nuclear operators
reflecting symmetries of
short distance physics
j


 - decay in EFT II
e
e
e
e
e
e

N






N



N
N

N
Tractable nuclear operators



Systematic operator classification
N



 - decay in EFT III
e
e
e
e
e
e




N


N

K  p



2
N
N
1

K NN p



N
N
K NNNN p

K , KNN , KNNNN can be O ( p0 ), O ( p1 ), etc.
0
 - decay in EFT IV
Operator classification
L(q,e)
  MWEAK

L,N,e
  M HAD
Spacetime & 
chiral
transformation properties
 - decay in EFT V
Operator classification
L(q,e) =
e.g.
GF2
L

  MWEAK
14

c
ˆ
C
(

)
O
e

e
 j
j
j
j1
ab
 a
b
ˆ
O1  qL   qL qR    qR

 - decay: a = b = +

 h.c.
 - decay in EFT VI
Operator classification
  MWEAK
ab
 a
b
ˆ
O1  qL   qL qR    qR

Chiral transformations: SU(2)L x SU(2)R



qL  LqL
qR  RqR

 
 expiqL  PL 
R
 R 2 R 
L
Parity transformations: qL

 - decay: a = b = +
Oˆ1ab  (3L , 3R )
qR

ˆ   O
ˆ 
O
1
1
 - decay in EFT VI
Hadronic basis
X Ra    a   , X La     a  ,   exp i  2
Chiral transformations


2  



ˆ
O1 ~ Tr X R X L  ~ 2   
F
No derivatives


K ~ O (p0)


 - decay in EFT VIII
Hadronic basis
ˆO  q   q q   q  q   q q   q
3
L
L L
 L
R
R R
 R
Chiral transformations
5L ,1R   1L ,5R 
2  

 

ˆ
O3 ~ Tr D X L D X L  L  R ~ 2     
F

Two derivatives
K ~ O (p2)
 - decay in EFT: Implications
e


u 

  
e
d
 
u


W

L(q,e)
=

d


e˜
Oˆ1 (3L , 3R )

u

e
W
N
N
Kˆ NN p1
e

N

K NNNN p 0 No WR - WL
u
Oˆ  (3
 
h.c.
L , 3R )

G d

c
ˆ

C j () O j 1e  j e
L  j1
2
F
14

RPV SUSY
N
O3  (5L , 1R )  (1L ,5R )

M
e
e
d
N

e 2
e


 
K  p


e
0
e˜ 
N 

e

mixing
R-M,
WPrezeau,
R - WL mix
& Vogel

Chiral properties of Oj++


determine p-dependence
of K ,KNN , KNNNN
Oˆ1  (3L , 3R )
K ~ O (p0)

Oˆ 3
 (5, 1)  (1, 5)
K ~ O (p2)
An open question
Is the power counting of operators sufficient to
understand weak matrix elements in nuclei ?

g
 9 2
2
n
n
Oˆ 0L
p p
p  , f 

32
 
76Ge

 
76Se

 0, ,9
 0, ,5
2

52
2
An open question
Is the power counting of operators sufficient to
understand weak matrix elements in nuclei ?
L
ˆ
O0
 0, ,9
 0, ,5
Oˆ 0L0
M fi
~
p0
  0

 2,  0

M fi
~  p 4
 0, 
2
Oˆ 0L2

M fi
~  p0
 4, 
0
L 4
ˆ
O0 etc.
e.g.

M fi
~

p0
Oˆ 0L2
-Decay: Interpretation
Dirac
Majorana
Theory
Challenge:
matrix
If the existence
of the
decay
elements+ mechanism
is established:
1000

Degenerate
2
ek
mk e 2i
k
• Which additional
isotopes ?
100
Effective  Mass (meV)

EFF
• What
m mechanism?

U
Inverted
e
10
Normal
m
Ue1 = 0.866
1
Ue2 = 0.5
m
2
2
atm
s ol
= 70 meV
= 2000 meV
Ue3 = 0
2
u

2
0.1
2
1
3
4
5 6 7
2
3
4
5 6 7
10
100
Minimum Neutrino Mass (meV)
2
3
4
5 6 7
1000

M
W




u

u
d


e
W

d

e

e˜


e
0


d
d


e˜ 

u
-Decay: Mechanism & m
Be = (e)/(ee)
Be =
 (Z,A)  e- + (Z,A))
 (Z,A)   + (Z,A))
- SM extensions with low ( TeV) scale LNV
Left-right symmetric model,
R-parity violating SUSY, etc.
possibly unrelated to m2
**
R = Be/Be» 10-2
R ~ O(a/~ 13 1
** In
absence of fine-tuning or hierarchies
in flavor couplings. Important caveat!
See: V. Cirigliano et al., PRL93,231802(2004)

Lepton Flavor & Number Violation
e

Present universe
Early universe
a Y1



MEG: B->e ~ 5 x
e
 
AZ,N 
R=
10-14

AZ,N 
Mu2e: B->e ~ 5 x 10-17
Also PRIME
B->e
a 1
L


B->e
a 1
S
?
?
log 10 ( / 0 )
Weak scale
Planck scale
Lepton Flavor & Number Violation
0decay


e
W
u
d
MEG:
LightBM
~ 5 x 10-14?
!eexchange
u

e
e

M
u W



d





Raidal, Santamaria;
Cirigliano, Kurylov, RM, Vogel
LFV Probes of RPV: ->e
e

AZ,N


e˜


e˜ 
e
u
AZ,N 

d



Heavy particle exchange
?
-17
Mu2e:
B
~
5
x
10
!e 


˜


0

d
e
e

lk11/ ~ 0.008
0.09 for
formm
TeV
SUSY
SUSY~~11TeV


e
e




e
e
 * 
Logarithmic enhancements of R

Low scale LFV: R ~ O(1)

 * 


e

GUT scale LFV: R ~ Oa
Open Questions
•
What is the absolute value of m ?
Why is m so tiny ?
•
What is the mass hierarchy ?
•
Is the neutrino its own antiparticle?
•
What is q13 ?
•
Do neutrinos violate CP?
•
How do neutrinos affect/reflect
astrophysical phenomena ?
Precision Neutrino Property Studies
Neutrino Mass: Terrestrial vs Cosmological
New  interactions
KATRIN, Mare
WMAP & Beyond
1000
Degenerate
Effective  Mass (meV)
100
Inverted
10
Normal
m
Ue1 = 0.866
1
Ue2 = 0.5
m
2
2
atm
s ol
= 70 meV
= 2000 meV
2
2
Ue3 = 0
0.1
Energy
Density
1
10
2
3
4
5 6 7
2
3
4
5 6 7
100
Minimum Neutrino Mass (meV)
2
3
4
Power
Spectrum
1000
5 6 7
Beacom, Bell,
Dodelson
Precision Neutrino Property Studies
Mixing, hierarchy, & CPV
Daya Bay
U e1 U e2 U e 3 


U  U 1 U  2 U  3 


U1 U 2 U 3 
1
0
0   cos q13
0 ei CP sin q13  cosq12 sin q12 0 1 0
0

 


  ia / 2
 0 cosq 23 sin q23  
0
1
0
0
 sin q12 cos q12 0 0 e

  i CP

 
ia / 2i

cosq13   0
0
1 0 0 e
0 sin q 23 cosq 23  e sin q13 0





Double
Chooz
Long baseline
oscillation studies:

CPV?
Normal or Inverted ?
Mini Boone
T2K
Precision Neutrino Property Studies
High energy solar s
Solar Neutrinos
DM +
EWB
Ice Cube
EM vs. luminosity: MNSP
KamLAND
Borexino
unitarity?
Solar model?
SNO+
LENS