Transcript Cobra
K. Zuber, Univ. of Sussex Epiphany Conference Cracow, 5-7 Jan. 2006 Neutrinoless double beta decay experiments Contents • Double beta decay and neutrino masses • Experimental status • Future activities • Outlook and summary Beta and double beta decay Beta decay • (A,Z) (A,Z+1) + e -e • n p + e- + - + e -decay Double beta decay • (A,Z) (A,Z+2) +2 e- + 2-e • (A,Z) (A,Z+2) + 2 e- 2 0 changing Z by two units while leaving A constant Neutrino mass schemes • almost degenerate neutrinos m1≈ m2≈ m3 • hierarchical neutrino mass schemes normal inverted 3 Flavour oscillations (PMNS) Analogous to CKM matrix e U e1 U 1 U 1 U e2 U2 U 2 cos12 sin 12 0 cos13 U sin 12 cos12 0 0 i 0 0 1 sin 13e solar U e3 1 e 2 mi U3 2 2E U 3 3 0 sin 13ei 1 0 0 1 0 i 1 1 0 0 cos sin 0 e 23 23 0 cos13 0 sin 23 cos 23 0 0 If sin 13 0 CP-violation atmospheric Majorana: U= UPMNS diag(1,e i ,e i ) 0 0 e i 2 Physical quantities Experimental observable: Half-life Double beta decay: Effective Majorana neutrino mass m mee U k 2 ek mk U 2 i ek ek e mk k relative CP phases = 1 Beta decay me = |Uek|2 mk Neutrino mass schemes and DBD „normal“ mass hierarchy m1<m2<m3 „inverted“ mass hierarchy m3 < m1 < m2 almost degenerate neutrinos m1≈ m2≈ m3 Benchmark number to discriminate between hierarchical models: m = 50 meV ++ - modes n p e In general: Double charged higgs bosons, R-parity violating SUSY couplings, leptoquarks... n • (A,Z) (A,Z-2) + 2 e+ (+2e) p e ++ Q-4mec2 • e- + (A,Z) (A,Z-2) + e+ (+2e ) +/EC Q-2mec2 • 2 e- + (A,Z) (A,Z-2) (+2e) EC/EC Q Important to reveal mechanism if 0 is discovered Enhanced sensitivity to right handed weak currents (V+A) Neutrino mass vs. right handed currents H int jL J L jL J R jR J L jR J R <> EC/ß+ , 1 Possible evidence <m> (eV) M. Hirsch et al., Z. Phys. A 347,151 (1994) Rp violating SUSY Double beta probes 111 Contents • Double beta decay and neutrino masses • Experimental status • Future activities • Outlook and summary Requirements Weizsäcker formula for A=const near minimum well approximated by (A /2 Z) 2 Z2 m(Z, A) const 2bS bC 1/ 3 me Z 2 A A m E-E O-O A Even Pairing energy leads to splitting: = 0 for even-odd, odd-even = - 12 MeV/A1/2 for even-even = + 12 MeV/A1/2 for odd-odd Zo Z There are 35 -- isotopes in nature Example - Ge76 Phase space 0decay rate scales with Q5 Isotope Ca 48 Ge 76 Se 82 Zr 96 Mo 100 Pd 110 Cd 116 Sn 124 Te 130 Xe 136 Nd 150 2 decay rate scales with Q11 Q-value Nat. abund. (PS 0v)–1 (PS 2v) –1 (keV) (yrs x eV2) (yrs) (%) 4271 2039 2995 3350 3034 2013 2802 2288 2529 2479 3367 0.187 7.8 9.2 2.8 9.6 11.8 7.5 5.64 34.5 8.9 5.6 4.10E24 4.09E25 9.27E24 4.46E24 5.70E24 1.86E25 5.28E24 9.48E24 5.89E24 5.52E24 1.25E24 2.52E16 7.66E18 2.30E17 5.19E16 1.06E17 2.51E18 1.25E17 5.93E17 2.08E17 2.07E17 8.41E15 Spectral shapes 0: Peak at Q-value of nuclear transition Measured quantity: Half-life Dependencies (BG limited) T1/2 a • (M•t/E•B)1/2 link to neutrino mass 1 / T1/2 = PS * ME2 * (m / me)2 Sum energy spectrum of both electrons Nuclear physics input needed ! Nuclear matrix elements measured quantity quantity of interest 1 / T1/2 = PS * NME2 * (m / me)2 The big unknown Started worldwide effort for a coherent program to reduce NME uncertainty down to 30%, summary report available nucl-ex/0511009 Needs international coherent effort http://www.ippp.dur.ac.uk/0NU2B/2005.html Nuclear matrix elements 1 / T1/2 = PS * ME2 * (m / me)2 charge exchange (p,n), (3He,t) nu N scattering EC/beta+ decays 0+ (A,Z) (A,Z+1) Q - values 1+ charge exchange (n,p), (d,2He) muon capture beta- decays antineutrinocapture (A,Z+2) 0+ Theory: Shopping list what to measure to improve calculations Experiment: Where can it be measured, who? Follow up workshop held at Osaka, Dec. 2005 , NNR 05 Outcome: Working packages • Working package 1: Charge exchange reactions • Working package 2: Q-value measurements • Working package 3: Muon capture • Working package 4: Double electron capture • Working package 5: Neutrino nucleus scattering • Working package 6: Nucleon transfer reaction Urgency: Some facilities might vanish in the near future!!! Double beta transitions All even-even ground state transitions are 0+ 0+ 2: d 2(E 0 E f ) f m, f H m m H i E i E m p E e 2 Fermi‘s Golden rule Only Gamow-Teller transitions Charge exchange reactions 2: Only intermediate 1+ states contribute Supportive measurements from accelerators Done for Ca-48 and Cd-116 and some other systems, all needed Currently: (d,2He) and (3He,t) The dominant problem - Background How to measure half-lives beyond 1020 years??? • The usual suspects (U, Th nat. decay chains) • Alphas, Betas, Gammas • Cosmogenics • thermal neutrons • High energy neutrons from muon interactions • 2 Heidelberg -Moscow • Five Ge Diodes (mass 10.9 kg) Isotopical enriched ( 86%) in 76Ge lead shield and nitrogen purging Peak at 2039 keV H.V. Klapdor-Kleingrothaus et al, Europ. Phys. J. A 12, 147 (2001) T1/2 > 1.9 x 1025 yr (90% CL) Evidence ? m < 0.35 eV Subgroup of collaboration T1/2 = 0.6 - 8.4 x 1025 yr m = 0.17 - 0.63 eV H.V. Klapdor-Kleingrothaus et al, Phys. Lett. B 586, 198 (2004) CUORICINO/CUORE - Principle Heat sink Thermal coupling Thermometer Double beta decay Crystal absorber example: 750 g of TeO2 @ 10 mK C ~ T 3 (Debye) C ~ 2 x10-9 J/K 1 MeV g-ray T ~ 80 K U ~10 eV CUORICINO - Results about 40 kg running 60Co 208Tl sum 130Te DBD T1/2 > 1.8 x 1024 yrs (90% CL) m < 0.2-1.1 eV C.Arnaboldi et al, hep-ex0501034, Phys. Rev. Lett. 2005 Idea: CUORE (750 kg) approved by INFN NEMO-III Only approach with source different from detector 100Mo 6.914 kg Q= 3034 keV 82Se 0.932 kg Q= 2995 keV 100Mo results 7.37 kg.y (Data Feb. 2003 – Dec. 2004) Sum Energy Spectrum NEMO-3 100Mo 219 000 events 6914 g 389 days S/B = 40 • Data 22 Monte Carlo Background subtracted Angular Distribution 219 000 events 6914 g 389 days S/B = 40 NEMO-3 100Mo • Data 22 Monte Carlo Background subtracted E1 + E2 (keV) Cos() 2: 0: T1/2 T1/2 = 7.14 0.02 (stat) 0.54 (syst) 1018 y m < 0.7 - 2.8 eV > 3.1 x 1023 yrs (90% CL) R. Arnold et al, hep-ex/0507083 Idea: Super-NEMO (100 kg) COBRA Use large amount of CdZnTe Semiconductor Detectors Array of 1cm3 CdTe detectors K. Zuber, Phys. Lett. B 519,1 (2001) + further interested institutes Cobra - The people D. Dobos, C. Gößling, H. Kiel, D. Münstermann, S. Oehl, T. Villett University of Dortmund J. Dawson, C. Montag, D. Palzaird, C. Reeve, J. Wilson, K. Zuber University of Sussex P.F. Harrison, B. Morgan, Y. Ramachers, D. Stewart University of Warwick A. Boston, P. Nolan University of Liverpool S. Fox, B. Fulton, A. Smith, R. Wadsworth University of York T. Bloxham, M. Freer University of Birmingham P. Seller Rutherford Appleton Laboratory M. Junker Laboratori Nazionali del Gran Sasso Isotopes nat. ab. (%) Q (keV) Zn70 Cd114 Cd116 Te128 Te130 Zn64 Cd106 Cd108 Te120 0.62 28.7 7.5 31.7 33.8 48.6 1.21 0.9 0.1 1001 534 2809 868 2529 1096 2771 231 1722 Decay mode ß-ßß-ßß-ßß-ßß-ßß+/EC ß+ß+ EC/EC ß+/EC Advantages • Source = detector • Semiconductor (Good energy resolution, clean) • Room temperature (safety) • Modular design (Coincidences) • Two isotopes at once • Industrial development of CdTe detectors • 116Cd above 2.614 MeV • Tracking („Solid state TPC“) 2 - decay 2 is ultimate, irreducible background Energy resolution important semiconductor 8Q(E /Q) 6 10 F 3.7 *10 Fraction of 2 in 0 peak: me S. Elliott, P. Vogel, Ann. Rev. Nucl. Part. Sci. 2002 Signal/Background: S 1 T12/ 2 433 0 B F T1/ 2 T12/ 2 3.2 1019 yrs T10/2 21026 yrs + Tracking option The 2x2 prototype Setup installed at Gran Sasso Underground Laboratory 4 naked 1cm3 CdZnTe more than 3.8 kg x days of data Physics 113Cd 113Cd one of only three 4-fold forbidden -emitters known in nature T1/2 = (8.2 ± 0.2 (stat.) +0.2-1.0 (sys)) 1015 yrs C. Goessling et al., nucl-ex/0508016, acc. by Phys. Rev. C First results H.Kiel, D. Münstermann, K. Zuber, Nucl. Phys. A 723,499 (2003) 0 T1/2 close to years obtained 1020 NPA 723 COBRA 70Zn 1.3 x 1016 2.7x1017 116Cd 8.0 x1018 1.2x1019 130Te 3.3x1019 5.7x1019 EC-modes NPA723 106Cd 0+ EC 3.8x1017 2.5 x1019 64Zn 0+ EC 2.8x1016 5.1x1018 64Zn 0ECEC 2.2x1016 9.6x1016 COBRA Current results are preliminary 64Zn limits world best Coincidences Aim: Coincidences among crystals should significantly reduce gamma background 2614 keV gamma (MC) 2000keV 1 30 0.9 25 0.8 0.7 20 0.6 y 0.5 15 0.4 10 About 0.2 % of events are coincidences 0.3 0.2 5 0.1 5 10 15 x 20 25 30 0 Array too small to prove power of coincidences Larger Array The 64 detector array Aim for next 2 years: The next step towards a large scale experiment, Scalable modular design, explore coincidences Mass is factor 16 higher, about 0.5 kg CdZnTe Detectors are at Dortmund, LNGS spring 06 Include: Cooling Nitrogen flushing Physics: - Can access 2ECEC in theoretically predicted region -Precision measurement of 113Cd - New limits The solid state TPC Introduce tracking properties by using segmented or pixellated electrodes and pulse shape analysis Single electron spectra Angular correlation coefficient Pixellated detectors Solid state TPC 3D - Pixelisation: Nobody said it was going to be easy, and nobody was right George W. Bush Contents • Double beta decay and neutrino masses • Experimental status • Future activities • Outlook and summary Back of the envelope T1/2 = ln2 • a • NA• M • t / N (T) ( Background free) 50 meV implies half-life measurements of 1026-27 yrs 1 event/yr you need 1026-27 source atoms This is about 1000 moles of isotope, implying 100 kg Now you only can loose: nat. abundance, efficiency, background, ... Future projects small scale ones will expand, very likely not a complete list... Dimension it right! Current idea: 40x40x40 CdZnTe detectors = 420 kg, enriched in 116Cd Sensitivity 50 meV EXO Tracking and scintillation New feature: 136Xe 136Ba++ e- e- final state can be identified using optical spectroscopy (M.Moe PRC44 (1991) 931) 200 kg enriched Xe prototype under construction at WIPP L=2 Processes In general 9 mass terms • e-conversion on nuclei m UkU k mk CP U U m k k k k k k • N X M. Flanz, W. Rodejohann, K. Zuber, Eur. Phys. J. C 16, 453 (2001) W. Rodejohann, K. Zuber, Phys. Rev. D 63, 054031 (2001) • K K. Zuber, Phys. Lett. B 479,33 (2000) • e p ve ( ) ( ) X M. Flanz, W. Rodejohann, K. Zuber, Phys. Lett. B 473, 324 (2000) W. Rodejohann, K. Zuber, Phys. Rev. D 62, 094017 (2000) limits on <m> (in GeV) 3.5 10-10 1.7 (8.2) 10-2 8.4 103 500 8.7 103 2.0 104 Limits are unphysical Candidate events H1 charged current event NOMAD trimuon event e p ve ( ) ( ) X N X Summary Double beta decay is the gold plated channel to probe the fundamental character of neutrinos Taking current evidences from oscillation data it is likely to be the only way to fix the absolute neutrino mass To go below 50 meV requires hundreds of kilograms of enriched material However, there is a hotly disputed evidence by the Heidelberg group, which would imply almost degenerate neutrinos To account for matrix element uncertainties supportive measurements are considered and in addition to disentangle the physics mechanism we need at least 3(4) isotopes measured Hope....