Transcript Slide 1
Ferromagnetic and non-magnetic spintronic devices based on spin-orbit coupling Tomas Jungwirth Institute of Physics ASCR Alexander Shick University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew Rushforth, Devin Giddings et al. Hitachi Cambridge University of Texas and Texas A&M Jorg Wunderlich, Bernd Kaestner David Williams Allan MacDonald, Jairo Sinova SO-coupling and electric field controlled spintronics: 1. Coulomb-blockade anisotropic magnetoresistance Spintronic SET in thin-film GaMnAs 2. Spin-Hall effect Electric-field induced edge spin polarization in GaAs 2DHG 1. Coulomb blockade AMR Spintronic transistor - magnetoresistance controlled by gate voltage Bptp B90 Huge hysteretic low-field MR I B0 Strong dependence on field angle hints to AMR origin Sign & magnitude tunable by small gate valtages Wunderlich, Jungwirth, Kaestner et al., cond-mat/0602608 AMR nature of the effect normal AMR Coulomb blockade AMR Single electron transistor Narrow channel SET dots due to disorder potential fluctuations (similar to non-magnetic narrow-channel GaAs or Si SETs) CB oscillations low Vsd blocked due to SE charging CB oscillation shifts by magnetication rotations magnetization angle At fixed Vg peak valley or valley peak MR comparable to CB negative or positive MR(Vg) Coulomb blockade AMR QQind0 = (n+1/2)e QQ0ind = ne eE2/2C C n-1 n n+1 n+2 [110] F [100] [110] Q( M ) U dQ'VD ( Q' ) e 0 Q ( Q Q0 ) ( M ) C U & Q0 CG [ VG VM ( M )] &VM 2C e CG 2 electric & magnetic control of Coulomb blockade oscillations [010] M [010] SO-coupling (M) Different doping expected in leads an dots in narrow channel GaMnAs SETs • CBAMR if change of |(M)| ~ e2/2C ~ 10Kelvin from exp. consistent • In room-T ferromagnet |(M)|~100Kelvin change • CBAMR works with dot both ferro or paramegnetic Calculated doping dependence of (M1)-(M2) of CBAMR SET • Huge, hysteretic, low-field MR tunable by small gate voltage changes • Combines electrical transistor action with permanent storage Other FERRO SETs • Non-hysteretic MR and large B chemical potential shifts due to Zeeman effect Ono et al. '97, Deshmukh et al. '02 • Small MR - subtle effects of spin-coherent and resonant tunneling through quantum dots Ono et al. '97, Sahoo '05 2. Spin Hall effect Spin-orbit only & electric fields only induced transverse spin accummulation x y applied electrical current z spin (magnetization) component Wunderlich, Kaestner, Sinova, Jungwirth, Phys. Rev. Lett. '05 Nomura, Wunderlich, Sinova, Kaestner, MacDonald, Jungwirth, Phys. Rev. B '05 Detection through circularly polarized electroluminescence Testing the co-planar spin LED only first p-n junction current only (no SHE driving current) p-AlGaAs etched 2DHG i-GaAs 2DEG n--doped AlGaAs Circ. polarization [%] 20 EL 10 0 -10 -20 Bz=0 EL peak • Can detect edge polarization • Zero perp-to-plane component of polarization at Bz=0 and Ip=0 SHE experiments 1 p 0 LED 1 -1 y z x 1 n LED 2 0 -1 1.505 10m channel - show the SHE symmetries - edge polarizations can be separated over large distances with no significant effect on the magnitude 1.510 1.515 Energy in eV 1.520 Polarization in % n Polarization in % 1.5m channel Sz (y)/Ex jyz (y)/Ex =0 Ex Szedge Lso ~ jzbulk tso x 0 10 20 30 40 50 y [kF-1] y H SO Beff s Beff 1 ( V ) p 2m 2 c 2 Theory: 8% over 10nm accum. length for the GaAs 2DHG Consistent with experimental 1-2% polarization over detection length of ~100nm Murakami et al. '03, Sinova et al.'04, Nomura et al. '05, ... Other SHE experiments: Spin injection from SHE GaAs channel Electrical measurement of SHE in Al Valenzuela, Tinkham '06 Kato et al. '04, Sih et al. '06 100's of theory papers: transport with SO-coupling intrinsic vs. extrinsic =0 skew scattering Microscopic origin Source Q VD Drain • Vg = 0 Q Q2 U dQ VD ( Q ) & VD Q / C U 2C 0 ' Gate VG e2 k BT 2C ' Coulomb blockade • Vg 0 ( Q Q0 )2 U & Q0 CGVG 2C QQind0 = (n+1/2)e Q=ne - discrete Q0=CgVg - continuous QQ0ind = ne eE2/2C C n-1 n n+1 n+2 Q0=-ne blocked Q0=-(n+1/2)e open Sub GaAs gap spectra analysis: PL vs EL ++ y X: bulk GaAs excitons -- z GaAs p-AlGaAs etched 6 i-GaAs 4 n-AlGaAs B A X GaAs/AlGaAs superlattice GaAs substrate E [eV] 010 8 p1 AlGaAs Wafer 2 C GaAs 0 A B -1 -2 0 2 I 2 B (A,C): 3D electron – 2D hole recombination -50 8 -100 z [nm] -150 1.48 A 1.49 B 1.50 6 4 X 2 C 1.51 [eV] E– Bias dependent emission wavelength for 3D electron 2D hole recombination [A. Y. Silov et al., APL 85, 5929 (2004)] 1.52 0 Int [a.u.] I: recombination with impurity states EL A PL 2DHG 2DEG B Wafer 1 I 10 Circularly polarized EL In-plane detection angle Perp.-to plane detection angle NO perp.-to-plane component of polarization at B=0 B≠0 behavior consistent with SO-split HH subband Light polarization due to recombination with SO-split hole-subband in a p-n LED under forward bias Microscopic band-structure calculations of the 2DHG: 3D electron-2D hole Recombination 0.50 a 0 + 20 HH+ 0 0.25 <S> E [meV] 20 spin-polarization of HH+ and HH- subbands <sz>HH<sx>HH+ 0.00 <sx>HH- -0.25 HH- LH -20 -0.2 0.0 0,2 -0.50 ky [nm-1] s=1/2 electrons to j=3/2 holes plus selection rules <sz>HH+ -0.2 0.0 0.2 ky [nm-1] spin operators of holes: j=3s circular polarization of emitted light in-plane polarization 1. Introduction Non-relativistic many-body e- Pauli exclusion principle & Coulomb repulsion Ferromagnetism total wf antisymmetric FERO = orbital wf antisymmetric * spin wf symmetric (aligned) MAG • Robust (can be as strong as bonding in solids) • Strong coupling to magnetic field (weak fields = anisotropy fields needed only to reorient macroscopic moment) NET e- Spin-orbit coupling (Dirac eq. in external field V(r) & 2nd-order in v /c around non-relativistic limit) Bex V Beff Beff s p H SO s Beff Beff 1 ( V ) p 2m 2 c 2 Bex + Beff FM without SO-coupling GaAs valence band As p-orbitals large SO GaMnAs valence band tunable FM & large SO AMR (anisotropic magnetoresistance) Ferromagnetism: sensitivity to magnetic field SO-coupling: anisotropies in Ohmic transport characteristics GaMnAs M || <010> M || <100> ky kx Band structure depends on M TMR (tunneling magnetoresistance) Based on ferromagnetism only spin-valve no (few) spin-up DOS available at EF large spin-up DOS available at EF Tunneling AMR: anisotropic tunneling DOS due to SO-coupling MRAM (Ga,Mn)As Au Au [100] [110] [100] [010] Magnetization F [010] [100] [100] Current [110] [010] [010] [010] - no exchange-bias needed - spin-valve with ritcher phenomenology than TMR Gould, Ruster, Jungwirth, et al., PRL '04, '05 Wavevector dependent tunnelling probabilityT (ky, kz) in GaMnAs Red high T; blue low T. y thin film Magnetisation in plane jt z Magnetization perp. to plane x y constriction jt Magnetization in-plane z x Giddings, Khalid, Jungwirth, Wunderlich et al., PRL '05 TAMR in metals ab-initio calculations Shick, Maca, Masek, Jungwirth, PRB '06 NiFe TAMR Bolotin,Kemmeth, Ralph, cond-mat/0602251 TMR ~TAMR >>AMR Viret et al., cond-mat/0602298 Fe, Co break junctions TAMR >TMR TMR EXPERIMENT Spin Hall Effect 2DEG 2DHG VD VT Single Electron Transistor Source Q VD Drain • Vg = 0 Q Q2 U dQ VD ( Q ) & VD Q / C U 2C 0 ' Gate VG e2 k BT 2C ' Coulomb blockade • Vg 0 ( Q Q0 )2 U & Q0 CGVG 2C QQind0 = (n+1/2)e Q=ne - discrete Q0=CgVg - continuous QQ0ind = ne eE2/2C C n-1 n n+1 n+2 Q0=-ne blocked Q0=-(n+1/2)e open Coulomb blockade anisotropic magnetoresistance Spin-orbit coupling Band structure (group velocities, scattering rates, chemical potential) depend on M If lead and dot different (different carrier concentrations in our (Ga,Mn)As SET) Q( M ) ' ' U dQ VD ( Q ) & ( M ) L ( M ) D ( M ) e 0 Q ( Q Q0 ) ( M ) C U & Q0 CG [ VG VM ( M )] &VM 2C e CG 2 electric & magnetic control of Coulomb blockade oscillations Wunderlich, Jungwirth, Kaestner, Shick, et al., preprint • CBAMR if change of |(M)| ~ e2/2C • In our (Ga,Mn)As ~ meV (~ 10 Kelvin) • In room-T ferromagnet change of |(M)|~100K • Room-T conventional SET (e2/2C >300K) possible CBAMR new device concepts (a) “0” (c) 50 RC [ M ] 20 18 25 RC [ M ] 16 M1 0 0.6 M0 0.8 1.0 VG [ V ] 14 12 magnetic non-volatile mode 10 Electrical operation mode “READ”: measure RC at VG = VG1 “1” (M1) “0” (M0) POWER “ON” “WRITE” permanently POWER “OFF” 8 “1” 6 1.00 1.01 VG0 RC [ M ] (b) electric mode 1.02 1.03 1.04 VG1 VG [ V ] Magnetic non-volatile mode M0 20 M1 0 -0.08 -BC2 -M1 -BC1 0.00 BC1 B [ T ] M = M1 : VG0 (“0”) VG1 (“1”) [Inverse: M = M0 : VG0 (“1”) VG1 (“0”)] VG = VG1 = 1.04V M0 (d) Electric mode BC2 0.08 VG = VG1 : M0 (“0”) M1 (“1”) [Inverse: VG = VG0 : M0 (“1”) M1 (“0”)] M0 : B B0 0 BC1 < B0 < BC2 M1 : B B1 0 B1 < -BC2 Electrically generated spin polarization in normal semiconductors SPIN HALL EFFECT Ordinary Hall effect Lorentz force deflect charged-particles towards the edge B _ _ _ _ _ _ _ _ _ _ _ FL +++++++++++++ I V Detected by measuring transverse voltage Spin Hall effect Spin-orbit coupling “force” deflects like-spin particles _ FSO __ FSO non-magnetic I V=0 Spin-current generation in non-magnetic systems without applying external magnetic fields Spin accumulation without charge accumulation excludes simple electrical detection Microscopic theory and some interpretation experimentally detected spin * velocity non-conserving (ambiguous) theoretical quantity - weak dependence on impurity scattering time - Szedge ~ jzbulk / vF tso=h/so : (intrinsic) spin-precession time Lso=vF tso : spin-precession length Szedge Lso ~ jzbulk tso Nomura, Wunderlich, Sinova, Kaestner, MacDonald, Jungwirth, Phys. Rev. B '05 n p 1.5 m channel LED1 0 y -1 z n LED2 x 1 0 -1 1.505 1.510 1.515 1.520 Energy in eV Wunderlich, Kaestner, Sinova, Jungwirth, Phys. Rev. Lett. '05 10m channel - shows the basic SHE symmetries - edge polarizations can be separated over large distances with no significant effect on the magnitude - 1-2% polarization over detection length of ~100nm consistent with theory prediction (8% over 10nm accumulation length) Nomura, Wunderlich, Sinova, Kaestner, MacDonald, Jungwirth, Phys. Rev. B '05 Polarization in % 1 Polarization in % SHE experiment in GaAs/AlGaAs 2DHG Conventionally generated spin polarization in non-magnetic semiconductors: spin injection from ferromagnets, circular polarized light sources, external magnetic fields SHE: small electrical currents in simple semiconductor microchips n p 1.5 m channel y z n x SHE microchip, 100A high-field lab. equipment, 100 A Spin and Anomalous Hall effects Spin-orbit coupling “force” deflects like-spin particles majority __ FSO _ H R0 B 4πRs M FSO I minority V InMnAs Simple electrical measurement of magnetization Skew scattering off impurity potential (Extrinsic SHE/AHE) H SO skew scattering 2s 2 2 k Vimp(r) m c SO-coupling from host atoms (Intrinsic SHE/AHE) H SO E es k 1 dV (r ) Beff r s l m c m c er dr bands from l=0 atomic orbitals weak SO (electrons in GaAs) bands from l>0 atomic orbitals strong SO (holes in GaAs) Intrinsic AHE approach explains many experiments • (Ga,Mn)As systems [Jungwirth et al. PRL 02, APL 03] • Fe [Yao, Kleinman, Macdonald, Sinova, Jungwirth et al PRL 04] • Co [Kotzler and Gil PRB 05] Experiment AH 1000 ( cm)-1 Theroy AH 750 ( cm)-1 • Layered 2D ferromagnets such as SrRuO3 and pyrochlore ferromagnets [Onoda and Nagaosa, J. Phys. Soc. Jap. 01,Taguchi et al., Science 01, Fang et al Science 03, Shindou and Nagaosa, PRL 01] • Ferromagnetic spinel CuCrSeBr [Lee et al. Science 04] Hall effects family • Ordinary: carrier density and charge; magnetic field sensing • Quantum: text-book example a strongly correlated manyelectron system with e.g. fractionally charged quasiparticles; universal, material independent resistance • Spin and Anomalous: relativistic effects in solid state; spin and magnetization generation and detection