Transcript Slide 1

Semiconductor spintronics in ferromagnetic and non-magnetic
p-n junctions
Tomas Jungwirth
Institute of Physics ASCR
Vít Novák, Alexander Shick, Karel Výborný,
Jan Masek, Josef Kudrnovsky, et al.
Hitachi Cambridge, Univ. Cambridge
University of Nottingham
Bryan Gallagher, Tom Foxon,
Richard Campion, Kevin Edmonds,
Andrew Rushforth, et al.
Texas A&M, University of Texas
Jorg Wunderlich, Andrew Irvine, David Williams, Jairo Sinova, Allan MaDonald et al.
Elisa de Ranieri, Byonguk Park, Sam Owen, et al.
Outline
1. Ferromagnetic semiconductor
spintronics (GaMnAs)
- ferromagnet like Fe,Ni,…
singular d/dT at Tc
- semiconductor like GaAs:C
p-n junction transistor
2. Non-magnetic semiconductor
spintronics
- spin detection via spin-injection
Hall effect
- spin-photovoltaic
p-n junction
Ni
GaMnAs
Ferromagnetic semiconductor (Ga,Mn)As
DOS
spin 
<< 1% Mn
EF
~1% Mn
>2% Mn
Energy
spin 
Very dilute and random moments
 compare with dense&ordered Fe, Ni,..
onset of ferromagnetism near MIT
Very heavily doped semiconductor
 compare with GaAs:C MIT at 0.01%C
Critical behavior of resistivity near Tc
Ordered magnetic semiconductors
Disordered DMSs
Eu
chalcogenides
Sharp critical behavior of resistivity at Tc
Broad peak near Tc and disappeares
in annealed optimized materials
Scattering off correlated spin-fluctuations
 


 (T ) ~  Si  S0    Si    S0 
singular  (F
 d ) ~ 
Fisher&Langer, PRL‘68
Eu0.95Gd0.05S
Nickel
 (F ~ d ) ~ U
singular
d / dT ~ dU / dT  cv
Scattering off correlated spin-fluctuations
 


 (T ) ~  Si  S0    Si    S0 
singular  (F
 d ) ~ 
Fisher&Langer, PRL‘68
Eu0.95Gd0.05S
Nickel
 (F ~ d ) ~ U
singular
d / dT ~ dU / dT  cv
Scattering off correlated spin-fluctuations
 


 (T ) ~  Si  S0    Si    S0 
singular  (F
 d ) ~ 
Eu0.95Gd0.05S
Fisher&Langer, PRL‘68
GaMnAs
Nickel
 (F ~ d ) ~ U
singular
d / dT ~ dU / dT  cv
Novak et al., PRL ‚08
Optimized materials with
upto ~8% MnGa and Tc upto ~190 K
Optimized materials with
upto ~8% MnGa and Tc upto ~190 K
Annealing sequence of
a 8% MnGa material
Optimized (Ga,Mn)As materials 
well behaved itinerant ferromagnets
resembling Fe, Ni, ….
Edmonds et al., APL‘08
0%MnGa
8%MnGa
Below room-temperature Tc in (Ga,Mn)As but in fact remarkable large Tc ‘s
Zener kinetic-exchange (Ga,Mn)As SC
compare with Stoner
MnAs
with ~8%MnGa  Tc  190 K
metal with 100%MnGa  Tc  300 K
GaAs:Mn – a doped p-type semiconductor
Mobilities in GaAs:Mn:
- 3-10x larger in GaAs:C
- similar in GaAs:Mg
MIT in p-type GaAs:
- C (30meV) ~ 1018 cm-3
- Mn (110meV) ~1020 cm-3
Short-range p-d kinetic-exchange (hybridization) alone cannot bind the hole
Mn-d local
moments
As-p holes
 same type of MIT (screening of long-range Coulomb) as with C, …
but shifted to significantly higher dopings
Low-voltage gating of the highly doped GaAs:Mn
Conventional MOS FET: ~10-100 Volts Ohno et al. Nature ’00, APL ‘06
All-semiconductor p-n junction FET Owen, et al. arXiv:0807.0906
p
n
p
Egap
n
VG
dp
d p  [2
n( Egap  VG )
p(n  p)
]1/ 2 ~ nm's d
p
Significant depletion in 5-10 nm (Ga,Mn)As at VG ~ Egap ~1 Volts
Low-voltage gating of the highly doped GaAs:Mn
Conventional MOS FET: ~10-100 Volts Ohno et al. Nature ’00, APL ‘06
All-semiconductor p-n junction FET Owen, et al. arXiv:0807.0906
Numerical simulations
2x 1019 cm-3
Significant depletion in 5-10 nm (Ga,Mn)As at VG ~ Egap ~1 Volts
Low-V accummulation/depletion
Low-V tunable coercivity
Switching by short low-V pulses
(Ga,Mn)As p-n junction spintronic transistor
Low-V controlled Kc and Ku magnetic anisotropies
-1V
+3 V
Experiment
Theory
1. FM SC spintronics (GaMnAs)
Summary
Ni
 singular d/dT at Tc 
very well behaved itinerant FM
 p-n junction transistor
controlled by ~1V fields
 high-speed SC (opto-) spintronics
GaMnAs
1. FM SC spintronics (GaMnAs)
Summary
Ni
 singular d/dT at Tc 
very well behaved itinerant FM
 p-n junction transistor
controlled by ~1V fields
 high-speed SC (opto-) spintronics
2. Non-magnetic semiconductor
spintronics
- spin detection via spin-injection
Hall effect
- spin-photovoltaic
p-n junction
GaMnAs
Spin-detection in semiconductors
Crooker et al. JAP’07, others
 Magneto-optical imaging
non-destructive
 lacks nano-scale resolution
and only an optical lab tool
 MR Ferromagnet
 electrical
 destructive and requires
Ohno et al. Nature’99, others
semiconductor/magnet hybrid
design & B-field to orient the FM
 spin-LED
 all-semiconductor
 destructive and requires
further conversion of emitted
light to electrical signal
 Spin-injection Hall effect
 non-destructive
 electrical
 100-10nm resolution with current lithography
 in situ directly along the SC channel
(all-SC requiring no magnetic elements in the structure or B-field)
Wunderlich et al. arXives:0811.3486
Family of spintronic Hall effects
(induced by spin-orbit coupling)
AHE
iSHE
++++++++++
–––––––––––
Ferromagnetic
(polarized charge current)
++++++++++
jqs
–––––––––––
nonmagnetic
(pure spin current)
js
Family of spintronic Hall effects
(induced by spin-orbit coupling)
AHE
iSHE
++++++++++
–––––––––––
++++++++++
jqs
–––––––––––
nonmagnetic
(pure spin current)
Ferromagnetic
(polarized charge current)
Spin injection Hall effect (SIHE)
++++++++++
–––––––––––
Spin-polarizer
(e.g. ferromagnet ,  light)
jqs
nonmagnetic
SIHE: spin-polarized charge current unlike (i)SHE
js
Family of spintronic Hall effects
(induced by spin-orbit coupling)
AHE
iSHE
++++++++++
–––––––––––
++++++++++
jqs
–––––––––––
nonmagnetic
(pure spin current)
Ferromagnetic
(polarized charge current)
Spin injection Hall effect (SIHE)
++++ ––––
––––
++++
Spin-polarizer
(e.g. ferromagnet,  light)
jqs
nonmagnetic
SIHE: spatially dependent unlike AHE in uniformly polarized systems
js
Optical injection of spin-polarized charge currents into Hall bars
 GaAs/AlGaAs planar 2DEG-2DHG photovoltaic cell
ni
p
2DHG
23
Optical injection of spin-polarized charge currents into Hall bars
 GaAs/AlGaAs planar 2DEG-2DHG photovoltaic cell
-
ni
p
2DHG
24
Optical injection of spin-polarized charge currents into Hall bars
 GaAs/AlGaAs planar 2DEG-2DHG photovoltaic cell
p
i
n
2DHG
2DEG
25
Optical injection of spin-polarized charge currents into Hall bars
 GaAs/AlGaAs planar 2DEG-2DHG photovoltaic cell
h
h
h h h
h
e
VH
e
e
e
e
e
2DHG
2DEG
26
Optical spin-generation area near the p-n junction
Simulated band-profile
p-n junction bulit-in potential (depletion length ) ~ 100 nm
 self-focusing of the generation area of counter-propagating e- and h+
Hall probes further than 1m from the p-n junction
 safely outside the spin-generation area
Spin-charge dynamics in disordered 2DEG with
in-plane Rashba () / Dresselhaus () spin-orbit fields
SO-length (~1m)
Spin-diffusion along the channel
of injected spin- electrons
see also Bernevig
et al., PRL‘06
Spin-charge dynamics in disordered 2DEG with
in-plane Rashba () / Dresselhaus () spin-orbit fields
SO-length (~1m) >> mean-free-path (~10 nm)
Spin-diffusion along the channel
of injected spin- electrons
see also Bernevig
et al., PRL‘06
Local spin-dependent transverse deflection
due to skew scattering
Our 2DEG in the weak spin-orbit, strong scattering regime  non-controversial
 Typical spin-orbit length in GaAs 2DEG ~ m
 injected spins will rotate at m scale
In-plane SO field
Diffusion of out-of-plane injected spins
 Hall effect in the diffusive regime dominated by skew-scattering
 Hall angles ~10-3 (comparable to AHE in FMs)
Skew-scattering off SO-imputity potential
Corresponding Hall angle for a given
out-of-plane polarization
SIHE device realization
n3,n2,n1: local SIHE
3
2
1 0
n0: averaged-SIHE / AHE
Spin-generation
area
SIHE detection at n2
RHall []
50
-
25
0
-25
+
Vsd= 0V
-50
3
2
1 0
RL [k]
20
10
0
0
25
tm [s]
50
75
Linear in the degree of circular polarization of light  spin-polarization of injected el.
2
10
5
n2
-3
H [ 10 ]
n1
-3
H [ 10 ]
1
0
0
-5
-1
-10
-2
-1.0
-0.5


0.0

0.5

(   ) / (   )
1.0
-1.0
-0.5


0.0

0.5

(   ) / (   )
1.0
SIHE survives to high temperatures
-3
H [10 ]
5
-
100K
160K (x2)
220K (x3)
0
-5
+
0
30
60
90
120 150 180
tm [s]
SIHE angle ~ 10-3 & +/- alternating on a m scale, all as expected from theory
n1
n2
n3
n0
10
n0 (x3)
n2
-
-3
H [10 ]
5
0
n1 (x3)
n3 (x3)
-5
-10
+
0
10
20
30
tm [s]
40
50
H [10-3]
2. Non-magnetic SC spintronics
Summary
 Spin-photovoltaic cell: polarimeter on a SC chip requiring no magnetic elements,
external magnetic field, or bias; form IR to visible light depending on the SC
 Spin-detection tool for other device concepts (e.g. Datta-Das transistor)
 Basic studies of quantum-relativistic spin-charge dynamics also in the intriguing
and more controversial strong SO regime in archetypal 2DEG systems
Mn
Ga
 h+
As
Mn
+
h
Ga
Mn
As