Transcript Slide 1

Dye-Sensitized Solar Cells
Sonja A. Francis
7th March 2012
Solar Irradiation
Solar irradiation is the
amount of radiant energy
emitted by the sun per area
and unit time for a given
wavelength of light.
Visible
IR 
M. Skompska. Synthetic Metals 2010, 160, 1-15.
2
Is Solar Energy Viable?
Potential amount of solar energy
collected annually in Alberta with a
1 kW capacity solar cell system
3.96 – 5.04 GJ
Photovoltaic potential GJ per
1kW capacity solar cell
Residential Electrical Energy Usage
in Alberta (2009)
> 32,000,000 GJ
Maximum solar system
capacity required
~ 8,300,000 kW  8.3 MW
J. Bell, T. Weis, Greening the grid, Powering Alberta’s future with renewable energy. 2009
http://pubs.pembina.org/reports/greeningthegrid-report.pdf. Retrieved 18th March 2010.
3
General Solar Cell Structure
h
Negative
Terminal
Positive
Terminal
Cell structure
Load
Electron flow in
external circuit
T. Markvart, L.Castañer. “Principles of Solar Cell Operation” in Practical Handbook of Photovoltaics
Fundamentals and Applications, 2003, Elsevier, Oxford, UK.
4
Types of Solar Cells
• Semiconductor solar cell
• Thin film solar cell
– E.g. Crystalline silicon
– E.g. CdS/CdTe
• Organic/Polymer solar cell
– E.g. Fullerene/Poly-(p-phenylvinylene)
n
V. Fthenakis. Renewable Sustainable Energy Rev. 2009, 13, 2746 - 2750.
Y. Cao et al. Sol. Energy Mat. Sol Cells 2010, 94, 114 - 127.
M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovolt.: Res. Appl. 2009, 17, 320 - 326.
5
Dye-Sensitized Solar Cells (DSSCs)
• Main components
www.chemphys.lu.se/research/subjects/cells/
Retrieved 16th March 2010
– Semiconductor electrode
– Dye sensitizer
– Redox couple in an
electrolyte
– Transparent counter
electrode coated with a
catalyst
V. Fthenakis. Renewable Sustainable Energy Rev. 2009, 13, 2746 - 2750.
Y. Cao et al. Sol. Energy Mat. Sol Cells 2010, 94, 114 - 127.
6
Semiconductor
• E.g. Semiconductor
oxides
SEM
– ZnO, SnO2, Nb2O5, In2O3
• TiO2 (anatase)
– High porosity (60%)
– High stability
– Wide band gap energy
3.2 eV ( 388 nm)
S. Mori, S. Yamigada, “TiO2-based Dye-Sensitized Solar Cell” in Nanostructure Materials
for Solar Energy Conversion, T. Soga (Ed.), 2006, Elsevier.
M. Grätzel. Acc. Chem. Res. 2009, 42, 1788 - 1798.
7
Sensitizer Dye
Suitable dyes absorb strongly
in the visible region.
(in DMF)
N
ε (mmol/cm2)
N
Zn
N
15000
N
COO NBu4
HOOC
HO2C
N
N
10000
N
Ru
N
NCS
NCS
HO2C
5000
COOH
COO
(in EtOH)
NCS
NBu4
SCN
NCS
Ru
N
HO2C
0
400
600
800
l (nm)
N
1000
N
CO2H
(in EtOH)
CO2H
D. L. Officer et al. J. Phys. Chem. C, 2007, 111, 11760–11762.
H. Sugihara et al. Sol. Energy Mat. Sol. Cells 2010, 94, 297 – 302.
8
Sensitizer Dye
Suitable dyes chemisorb to the semiconductor.
E.g. One molecule of N719 exhibiting bidentate binding to TiO2.
surface
TiO2
surface
OH
OH
Ti
Ti
Y. Narita et al. Electrochem. Solid-State Lett. 2009, 12, B167 – B170.
9
Redox couple/Electrolyte
Iodide/Triiodide
I3- + 2e-  3I-
h
3 I-
Dye
Counter
electrode
Semiconductor
Electron
transfer
Electron
transfer
Electron
transfer
Dye +
I3Electron flow
External Circuit
B. C. O’Regan, J. R. Durrant, Acc. Chem. Res. 2009, 42, 1799 – 1808.
10
Counter Electrode
 E.g. Platinum loaded on
Fluorine-doped SnO2 (FTO)
– a transparent conducting
oxide (TCO)
 Pt is an excellent catalyst for
triiodide reduction
x Rare and expensive
x Incompatible with some
electrolytes e.g. poly sulfide
I32 e-
To
external
circuit
3II3-/I-
Pt FTO
G. Boschloo; A. Hagfeldt. Acc. Chem. Res. 2009, 42, 1819 – 1826.
11
Processes in the DSSC

1. Photo-excitation
D*


hυ


Ox
D/D+

Red
2. Electron injection
and dye-relaxation
3. Electron flow
4. Re-entry
5. Reduction of
electrolyte
Semiconductor Dye
Electrolyte CE
6. Dye regeneration
(reduction)
B. C. O’Regan, J. R. Durrant, Acc. Chem. Res. 2009, 42, 1799 – 1808.
12
Electron transfer in the DSSC
VOCISC
– open
circuit
voltage;
maximum
voltage
- short
circuit
current;
maximum
current
the dye-sensitized
solar(no
cellload).
can achieve.
achieved
Conduction
Band
LUMO
Potential/V
Fermi Level
VOC
Redox
Potential
Fermi
Level
HOMO
Semiconductor Dye Molecule
Electrolyte
Cathode
not drawn to scale
G. Boschloo; A. Hagfeldt. Acc. Chem. Res. 2009, 42, 1819 – 1826.
13
Electrical Losses in DSSCs
D*


1. Dye relaxation
2. Recapture by

oxidised
Red
Ox
electrolyte
D+/D
Semiconductor Dye Electrolyte
3. Recapture by
Pt
oxidised dye
A. J. Bard; L. R. Faulkner. “Photoelectrochemistry and Electrogenerated Chemiluminescence” in
Electrochemical Methods Fundamentals and Applications, 2nd Ed. 2001, Wiley, New Jersey, USA.
14
Most Efficient DSSC (11.1%)
J-V and Power curves
JSC 20.9 mA/cm2
VOC 0.736 V
• Incident radiation
100 mW/cm2
• TiO2 semiconductor
• Dye sensitizer
NCS
SCN
NCS
Ru
N
HO2C
N
N
CO2H
CO2H
• I- /I3- in ionic liquid
electrolyte
L. Han. et al. J. Jpn. Appl. Phys. 2006, 45, L638 – L640.
15
Make your own solar cell at home
http://www.youtube.com/watch?v=bVwzJEhM
mD8&feature=player_embedded
http://www.wired.co.uk/magazine/archive/201
0/03/how-to/how-to-make-your-own-solarcell-
Retrieved 8th March 2012
16
Current Products
Sony’s functional Hana-Akari DSSC
lanterns.
G24 Innovations Back pack DSSC
0.5W under direct sunlight.
Claims 12 % efficiency.
P. Patel “Dye-Sensitized Solar to Go” in Technology Review October 2009, MIT Publications. Retrieved 18th
March 2010
Sony design. http://www.sony.net/Fun/design/activity/sustainable/dssc.html. Retrieved 18th March
17
2010.
Additional References
http://www.itechnews.net
/tag/solar-panel/
Retrieved 16th March 2010
http://solarpanelspower.net
/solar-panels/miniature-pv-cells
Retrieved 16th March 2010
NRC PV Potential Interactive map,
glfc.cfsnet.nfis.org/mapserver/pv/index.php?lang=e.
Retrieved 18th March 2010.
Electricity Statistics.
http://www.energy.alberta.ca/Electricity/682.asp. Retrieved
18th March 2010.
http://www.ecf.utoronto.ca
/~luzheng/research.html
Retrieved 16th March 2010
18