Lecture 12 - nuu.edu.tw

Download Report

Transcript Lecture 12 - nuu.edu.tw

Lecture 12
BJT’s Differential Pair
Microelectronic Circuits by
Meiling CHEN
1
topics
• Ideal characteristics of differential
amplifier
–
–
–
–
Input differential resistance
Input common-mode resistance
Differential voltage gain
CMRR
• Non-ideal characteristics of differential
amplifier
– Input offset voltage
– Input biasing and offset current
• Differential Amplifier with active load
Microelectronic Circuits by
Meiling CHEN
2
Differential pair
Figure 7.12 The basic BJT differential-pair configuration.
Microelectronic Circuits by
Meiling CHEN
3
Common mode operation
 Q1  Q2
 vB1  vB 2  vCM
 iE1  iE 2
I

2
 vC1  vC 2  VCC
I
  RC
2
vC1  vC 2  0
Reject common mode input
Figure 7.13 Different modes of operation of the BJT differential pair: (a) The differential pair with a common-mode input signal vCM.
Microelectronic Circuits by
Meiling CHEN
4
The differential pair with a “large” differential input
signal
(1)VB1  VB 2
VB1  1V , VB 2  0
Q1 on  VE1  0.3V  VE 2  Q2
off
VC1  VCC  IRC , VC 2  VCC
VC1  VC 2  IRC
Figure 7.13 Different modes of operation of the BJT differential pair:. (b) The differential pair with a “large” differential input signal.
Microelectronic Circuits by
Meiling CHEN
5
(2)VB1  VB 2
VB1  1V , VB 2  0
Q2

0 .7
on  VE 2  0.7V  VE 2  Q1 off
VC 2  VCC  IRC , VC1  VCC
VC1  VC 2  IRC

Figure 7.13 (Continued) (c) The differential pair with a large differential input signal of polarity opposite to that in .
Microelectronic Circuits by
Meiling CHEN
6
(3)VB1  VB 2
VB1  sm all, VB 2  0
I
I
I E1   I , I E 2   I
2
2
I
VC1  VCC   RC  IRC
2
I
VC 2  VCC   RC  IRC
2
VC1  VC 2  vo  2IRC
 vo  f (I )
Figure 7.13 (Continued) (d) The differential pair with a small differential input signal vi. Note that we have assumed the bias current source I
to be ideal (i.e., it has an infinite output resistance) and thus I remains constant with the change in vCM.
Microelectronic Circuits by
Meiling CHEN
7
Exercise 7.7
let   1, vBE  0.7V
find vE , vC1 and vC 2
I
5  0.7
 4.3mA
1k

0 .7

Microelectronic Circuits by
Meiling CHEN
8
Large signal operation
iE1 
IS
e ( vB1 vE ) / VT
iE 2 
IS
e ( vB 2 vE ) / VT


iE 1
 e ( vB1 vB 2 ) / VT
iE 2
iE1
1

iE1  iE 2 1  e ( vB 2 vB1 ) / VT
iE 2
1

iE1  iE 2 1  e ( vB1 vB 2 ) / VT
iE1  iE 2  I
iE1 
iE 2
I
1  e vid / VT
I

1  e vid / VT
Microelectronic Circuits by
Meiling CHEN
9
iC1
1

I 1  e vid / VT
1  e vid / VT
iC 2
I
1



vid / VT
I
1 e
1  e vid / VT
I
iE 1 
iE 2

How to enhance linear
region?
Figure 7.14 Transfer characteristics of the BJT differential pair of Fig. 7.12 assuming  . 1.
Microelectronic Circuits by
Meiling CHEN
10
Re  vE  vBE  iC 
Figure 7.15 The transfer characteristics of the BJT differential pair (a) can be linearized (b) (i.e., the linear range of
operation can be extended) by including resistances in the emitters.
Microelectronic Circuits by
Meiling CHEN
11
large signal analysis (AC+DC)
I
iC1 
 (1)
1  e vid / VT
I
iC 2 
1  e vid / VT
e vid / 2VT
Ievid / 2VT
(1)  vid / 2VT  iC1  vid / 2VT
e
e
 e vid / 2VT
let
vid  2VT
vid
)
2VT

v
v
1  id  1  id
2VT
2VT
I (1 
 iC1
 iC1 
 iC 2 
ic 
Figure 7.16 The currents and voltages in the differential amplifier when a
small differential input signal vid is applied.
I
2
I
2
I vid
2VT 2

I vid
2VT 2


I vid
2VT 2
gm
vid
2
vBE
Q1  VBE 
vid
2
vBE
Q2
 VBE 
vid
2
Microelectronic Circuits by
Meiling CHEN
Taylor
series
 IC 
I C vid
VT 2
 IC 
I C vid
VT 2
AC
12
Small signal analysis (AC)
g m  I C / VT 
vid
2re
ic  ie 
ie 
VT
VT
I /2
re  VT / I E 
ie 
I / 2
vid
2re
 gm
vid
2re
ie
ie
RC

Figure 7.17 A simple technique for determining the signal currents in a
differential amplifier excited by a differential voltage signal vid; dc quantities
are not shown.
vid
2
ie
Microelectronic Circuits by
Meiling CHEN
re
id
vid
RC

ie
re
13
vc1
vo  vc1  vc 2
vc2
RC
RC
g m v


v

Rid 
re
id
vid
g m v


v

re
vid
2reie

 2(1   )re Input differential resistance
i
id
e
1 
vid
I
I

2
gm  C  E 
VT
VT
re
vid
v C 2   g m RC
2
vc1  vc 2
Ad 
  g m RC Differential voltage gain
vid
Microelectronic Circuits by
v C1   g m RC
Meiling CHEN
14
Common mode
vc1
vo  vc1  vc 2
vc2
ie 2
ie1
RC
g m v

v

RC
g m v
ib1
ie1
re
DC
vicm ib 2

ie 2
v

re
vc1  ie1 RC
if
vc 2  ie2 RC
RC1  RC 2  vo  0
vo  vc1  vc 2  Rc (ie1  ie2 )
 ie1  ie2  0  vo  Rc (ie1  ie2 )  o
Microelectronic Circuits by
Meiling CHEN
15
External emitter resistance
vc1
RC1
vo  vc1  vc 2
ie
g m v
ie
re
RE
vc2
vid
ib

vid
2re  2 RE
ie
v /(2re  2 RE )
 id
 1
 1
v
Rid  id  (   1)(2re  2 RE )
ib
ib 
RC 2
ie

ie 
g m v
Input differential resistance
re
v C1   RCie
RE
RE
Differential voltage gain
RE  Rid 
RE  Ad 
v C 2   RCie
vid
ie 
2( re  RE )
vc1  vc 2
RC
Ad 
 
vid
( re  RE )
Microelectronic Circuits by
Meiling CHEN
16
Bartlett Bisection theorem



v1
v2
v1


N

I
1
N
2

1
N
2

2. v1  v2  V  0
Common Mode
Differential Mode


v1


I=0 open circuit
Common-mode

V
1. v1  v2  I  0
1
N
2
v2
v1

1
N
2

V=0 short circuit
Differential-mode
Microelectronic Circuits by
Meiling CHEN
17
Differential Mode
Common Mode
Microelectronic Circuits by
Meiling CHEN
18
Equivalence of the differential amplifier to a CE amplifier
Figure 7.19 Equivalence of the BJT differential amplifier in (a) to the two common-emitter amplifiers in (b). This equivalence applies
only for differential input signals. Either of the two common-emitter amplifiers in (b) can be used to find the differential gain,
differential input resistance, frequency response, and so on, of the differential amplifier.
Microelectronic Circuits by
Meiling CHEN
19
vc1
gm

(ro // Rc )
vid
2
vc 2 g m

(ro // Rc )
vid
2
Ad 
vc1 vc 2 vc1  vc 2


  g m ( RC // ro )
vid vid
vid
Differential half-circuit
i 
V
r
Vid
 V
2(1   )re
2
V
2V
Rid  id 
 2r
V
i

r
Figure 7.21 (a) The differential half-circuit and (b) its equivalent circuit model.
Input differential resistance
Microelectronic Circuits by
Meiling CHEN
20
Common mode gain et CMRR (I=0 open circuit)
vc1  ie Rc
vicm  ie (re  2 REE )
Acm 1  
2
RC
(re  2 REE )

RC
(2 REE )
1
g m RC
2
A
CMRR 1  d  g m REE
2
Acm
Ad
1
2

Common-mode half-circuit
Figure 7.22 (a) The differential amplifier fed by a common-mode voltage signal vicm. (b) Equivalent “halfcircuits” for common-mode calculations.
Microelectronic Circuits by
Meiling CHEN
21
Common mode gain at CMRR ( Asymmetric case)
vc1  ie RC
vc 2  ie ( RC  RC )
Last page
vo  vc1  vc 2  ie RC
RC
vc1  vicm
vicm  ie (2 REE  re )
 RC
RC
RC RC
Acm 


2 REE  re 2 REE
2 REE RC
vc 2  vicm
<<
Acm 1  
v1  v2
vicm 
2
vid  v1  v2
2
RC
2 REE
RC
2 REE
RC
2 REE
1
g m RC
1
2
2
A
CMRR  d  g m REE
Acm
Ad
v1  v2
vo  Ad (v1  v2 )  Acm (
)
2
2 REE  re
 vicm
Microelectronic Circuits by
Meiling CHEN

22
Common-mode input resistance
V  ie (re  2 REE )
ie
I  ib 
1 
2 Ricm  (   1)(2 REE // ro )
ro
Ricm  (   1)(REE // )
2
g m v
I
ro

v

RC
re
2 REE
Figure 7.23 (a) Definition of the input common-mode resistance
Ricm. (b) The equivalent common-mode half-circuit.
Microelectronic Circuits by
Meiling CHEN
23
ie
ie  i  ie
Ricm
g m v
ib
ro

ie v
re

i
2 Ricm
RC
ro
 (   1)( REE // )
2
2 REE
ie  i
2 Ricm 
V
,
ib
V  reie  2 REE i
2 REE i  ro (ie  i )  Rc (ie  i  ie )
 (2 REE  ro  Rc )i  roie  Rc (ie  ie )  roib (1   )  Rc ib
i
roib (1   )  Rc ib
2 REE  ro  Rc
V  reie  2 REE i  reib (1   )  2 REE
2 Ricm 
roib (1   )  Rc ib
2 REE  ro  Rc
2 REE ro
2 REE Rc
V
 re (1   )  (1   )

ib
2 REE  ro  Rc 2 REE  ro  Rc
2Ricm  (   1)(2REE // ro )
Microelectronic Circuits by
Meiling CHEN
24
Example 7.1
1. Input differential resistance
  100
re1  re 2 
VA  100
VT 25m V

 50
I E 0.5m A
Rid  2(   1)(re  RE )  40k
2. Differential voltage gain
Ad 
vo vid
Rid
 g m RC
 40
vid vs
Rs  Rid
3. Common-mode gain in worst case
Acm 
4. Input common-mode resistance
RC
RC
2 REE  (re  RE ) RC
RC  0.02RC
VA
4
ro 
 200k
A

5

10
cm
I /2
1
A
Ricm  (   1)(2 REE // ro )  6.7 M
CMRR  20 log d  98dB
2
A
25
Microelectronic Circuits by
Meiling CHEN
cm
Differential mode
vo
vo
RS
vs
2
RC
ie
RC
vs
2
RS
g m v
RE
re re 
Rid 1  (1   )(50  150)
RE
2
VT 25m

 50
I E 0.5m
150
Rid  2(1   )(50  150)  40k
v c1
 ie Rc
  (1   )ib10k
Ad 


vs
Rs ib  0.2ie 5kib  0.2k (1   )ib
2
v c1 1   (1   )10k

vs 2 5k  0.2k (1   )
v c1 v c 2
v
  (1   )10k
 2 c1 
 40
vs
vs 5k  0.2k (1   )
Rid
Microelectronic Circuits by
Meiling CHEN
26
Common mode
vo
RS
vicm
vo
RS
RC
vicm
ie
ie
ib
0.05k
re
g m v
0.15k
RE
ro 
rO
RC 10k
RE
2 Ricm
2 REE
2 Ricm
ie
400 k
if
VA VA

 200k
I
IC
2
2 REE
RC1  Rc  1%  RC 2  Rc  1%
vc1    ib ( RC )
vc 2    ib ( RC  RC )
2 Ricm  (1   )(400k // 200k )
RC  RC  0.02
Ricm 
1
(1   )(400k // 200k )  6.7 M
2
Microelectronic Circuits by
Meiling CHEN
27
vicm  5kib  (1   )ib (400.2k )
Acm 
vc1  vc 2
 (RC )

vicm
5k  (1   )(400.2k )
7-4.2 Input offset voltage
Vos 
V
o vi  0
Ad
Solution : Add a -Vos

 Vos
Ad
Vo  Vos Ad  (Vos ) Ad  0

Microelectronic Circuits by
Meiling CHEN
28
7-4.2 Input offset voltage
let
RC1  RC 2 , Q1  Q2
RC
2
R
RC 2  RC  C
2
R
I
VC1  VCC  ( )(RC  C )
2
2
R
I
VC 2  VCC  ( )(RC  C )
2
2
I
Vo  VC1  VC 2 
RC
2
I
I
RC
RC
Vo
Vos 
 2
 2
IE
Ad
g m RC
RC
VT
RC1  RC 
Case 1 : different RC
Case 2 : different Q
Vos  VT
RC
RC
Microelectronic Circuits by
Meiling CHEN
29
consider Q1  Q2  I S 1  I S 2
VBE
IC  I S e
VT
I S
2
I S
IS2  IS 
2
VBE1  VBE 2
internal
I S1  I S 
 I E1 
 IE2
Consider Q and RC
Vos  (VT
RC 2
I
)  (VT S ) 2
RC
IS
Solution : Add a -Vos
I S
I
(1 
)
2
2I S
I S
I
 (1 
)
2
2I S
I I S
 VO  
RC
2 IS
Vos  VT (
I S
)
IS
Microelectronic Circuits by
Meiling CHEN
30
Input offset current
I /2
 sym m etric case
 1
let 1   2  I B1  I B 2
I B1  I B 2 
I os  I B1  I B 2


, 2   
2
2
I E1
I
1
I 1

 I B1 


(1 
)
(1  1 ) 2   1   / 2 2   1
2
let 1   
 I B2 
I os 
IE2
I
1
I 1



(1 
)
(1   2 ) 2   1   / 2 2   1
2
I
(

)
2(   1) 
I I
I
 I B  B1 B 2 
2
2(   1)

 I os  I B ( )

Microelectronic Circuits by
Meiling CHEN
31
7-5.5 Differential amplifier with active load
Active load
Small-signal
Microelectronic Circuits by
Meiling CHEN
32
Active load Q3 Q4
Passive load RC
Ad   g m (ro 4 // ro 2 )
Ad   g m RC
RC
Acm  
2 REE
CMRR  g m REE
Rid  (1   )(2re  2 RE )  2r  2(1   ) RE
r
Ricm  (1   )(REE // 0 )
2
Ro  RC // r0
1
2
Acm 1
2
ro 4

 3 REE
CMRR  g m (ro // ro 4 )
 3 REE
ro 4
Rid  2r
Ricm 
Ro  ro 4 // ro 2
Improving: 1. Differential gain
2. Common-mode gain and CMRR
Defect: Vos
Microelectronic Circuits by
Meiling CHEN
33
Differential amplifier with active load equivalent-circuit
Differential-mode
vo
Q1
v B1 
vid
2
Q4
Q3
Q2
vB2  
vid
2
0v
Vid
2
Vo

r 1 V 1

Rid 

gm1V 1 ro1 re3 // ro3V 4 r 4

Ro  ro 4 // ro 2

Vid
2

g m4V 4 ro 4
ro 2 gm2V 2 r 2 V 2

vid
I
vid
 Ir  Rid  2r
2
Microelectronic Circuits by
Meiling CHEN
34
vid
v
)(re 3 // ro 3 // ro1 // r 4 )   g m1re 3 ( id )
2
2
v id
 vb 4  vb 3  g m 4 vb 4   g m 4 g m1re3 ( )
2
v
vo  ( g m v 4  g m v 2 )(r04 // ro 2 )
io  g m 2 ( id )  g m 4 vb 4
2
vid
v

[

g
v

g
(

)](r04 // ro 2 )
vid
vid
o
m 4
m
2
 io  g m 2 ( )  g m 4 g m1re 3
2
2
v
v 4   g m v 1 ( r01 // re 3 // ro 3 // r 4 )   g m id re 3
 g m1  g m 2  g m 4  g m
2
vb 3   g m1 (
I /2
gm 
VT
re 3   3 / g m 3  1 / g m
 GM 
io
 gm
vid
vid
)(r04 // ro 2 )[g m (r01 // re 3 // ro 3 // r 4 )  1]
2
v
vo  g m ( id )(r04 // ro 2 )[g m re 3  1]
2
1
vo
1
Ad 
 g m ( )(r04 // ro 2 )[g m re 3  1]
vid
2
vo  g m (
Ad 
vo
 g m (r04 // ro 2 )
vid
Microelectronic Circuits by
Meiling CHEN
35
Since four transistors have the same
parameters
i
vx
v
 x
Ro 2 2ro 2
ix  2i 
vx vx vx


ro 4 ro 2 ro 4
 Ro 
vx
 ro 2 // ro 4
ix
Ad 
vo
 GM Ro  g m (ro 2 // ro 4 )
vid
 ro 2  ro 4  ro
Ad  g m
ro
2
Rid  2r
Microelectronic Circuits by
Meiling CHEN
36
Common-mode gain at CMRR
Differential amplifier with active load
equivalent-circuit Common-mode
i1
Vicm
ie1
ro1
vb3
Vo

1
r 3 //
// ro3 r V
4
4
gm3

g m4V 4
re1
i1
ro 4 i2 ro 2
ie 2
re 2
2 REE
2 REE
Microelectronic Circuits by
Meiling CHEN
Vicm
i2
37
i1  i2 
vicm
2 REE
vb 3  i1 (
1
// r 3 // ro 3 // r 4 )
g m3
Q3
ic 4  g m 4 vb 3
vo  ( g m 4 vb 3  i2 )ro 4
Acm 

let
vo
r
1
 o4 [ gm4 (
// r 3 // ro 3 // r 4 )  1]
vicm 2 REE
g m3
ro 4
2 REE
1
1
1


r 3 r 4 ro 3
1
1
1
g m3 


r 3 r 4 ro 3

v

r
g m v
ro
1
gm
ro
g m3  g m 4 , r 3  r 4 , ro 3  r 3 , ro 3  r 4
Acm 
1
r 3
vo
r
r
r
2
  o4
  o4
   o4
vicm
2 REE g  1
2 REE  3
 3 REE
m3
r 3
CMRR 
Ad
Acm
 g m (ro 2 // ro 4 )(
 3 REE
ro 4
)

v

r
when ro 2  ro 4  ro
CMRR 
1
 3 g m REE
2
Microelectronic Circuits by
Meiling CHEN
38
Input offset voltage (systematic problem)
I 3  2 I B  I 4 I
 I3  2
I3
  I 4 I
let I 3   I
I3
IB
I4
2
I4
1

  P  3   4
I3 1  2 /  P
I / 2
I4 
1 2 / P
I
I / 2
I 2 /  P
I
i 



2 1 2 / P
2 1 2 / P P
i
I /  P
2VT
Vos  


GM
I / 2VT
P
Microelectronic Circuits by
Meiling CHEN
39
Exercise 7-13
 VCC
 VCC
Q3
v1
Q4
v2
Q1
Ro  ro
Q2
Ro  ro
 VCC
I
I
Q5
Q6
g m v
ro

v


r
v

r
g m v
ro
 VEE
Microelectronic Circuits by
Meiling CHEN
40