Transcript Slide 1

Spin Torque Transfer Technology
S. James Allen
UC Santa Barbara
• Science
• Technology
Spin Torque Transfer – RAM, STT-RAM
Spin Torque Transfer Nano-oscillators
Spin logic devices
ITRS Emerging Technology Review, 12 July 2008
1
Contact: SJ Allen, [email protected]
Spin Torque Transfer Technology
With input from
Mark Rodwell
Bob Buhrman
Stu Wolf
H. Ohno
Nick Rizzo
Yiming Huai
Bill Rippard
Steve Russek
Eli Yablonovitch
Ajey Jacob
ITRS Emerging Technology Review, 12 July 2008
UC Santa Barbara
Cornell
U. Virginia
Tohoku University
Free Scale
Grandis
NIST
NIST
UC Berkeley
Intel
2
Contact: SJ Allen, [email protected]
Spin Torque Transfer Technology
From R. A. Buhrman, “Spin Torque
Effects in Magnetic Nanostructures”,
Spintech IV, 2007
• Science
• Technology
Spin Torque Transfer – RAM, STT-RAM
Spin Torque Transfer Nano-oscillators
Spin logic devices
ITRS Emerging Technology Review, 12 July 2008
3
Contact: SJ Allen, [email protected]
Spin Torque Transfer: Science
J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling
barrier”, Phys. Rev. B, 39 6995 (1989).
• Heisenberg exchange
• Giant magneto resistance
• Spin transfer torque
ITRS Emerging Technology Review, 12 July 2008
4
Contact: SJ Allen, [email protected]
Spin Torque Transfer: Science
Ferromagnet
Non-magnetic
J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling
barrier”, Phys. Rev. B, 39 6995 (1989).
Ef , 1-band
Ferromagnet
• Heisenberg exchange
• Giant magneto resistance
• Spin transfer torque
ITRS Emerging Technology Review, 12 July 2008
5
Contact: SJ Allen, [email protected]
Spin Torque Transfer: Science
J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling
barrier”, Phys. Rev. B, 39 6995 (1989).
Ferromagnet
Ef , 1-band
Ferromagnet
Ferromagnetic
Ferromagnetic
Anti-ferromagnetic
Anti-ferromagnetic
• Heisenberg exchange
ITRS Emerging Technology Review, 12 July 2008
6
Contact: SJ Allen, [email protected]
Spin Torque Transfer: Science
J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling
barrier”, Phys. Rev. B, 39 6995 (1989).
Ef , 1-band
I / V  G  G0
( R    R(0))
1  P 2 cos  
R  0
(1  P 2 )
• Giant magneto resistance
ITRS Emerging Technology Review, 12 July 2008
7
2P 2

(1  P 2 )
P = 1,
ideal, perfect spin valve
Contact: SJ Allen, [email protected]
H. Ohno, “Spintronics”
Seminar, UCSB May, 2008
ITRS Emerging Technology Review, 12 July 2008
8
Contact: SJ Allen, [email protected]
H. Ohno, “Spintronics”
Seminar, UCSB May, 2008
( R    R(0))
R  0
2P 2

 6
2
(1  P )
P  0.87
P = 1,
ideal, perfect spin valve
ITRS Emerging Technology Review, 12 July 2008
9
Contact: SJ Allen, [email protected]
H. Ohno, “Spintronics”
Seminar, UCSB May, 2008
Free
M. Hosomi, et al., “A novel nonvolatile
memory
with
spin
torque
transfer
magnetization
switching:
spin-ram”,
Electron Devices Meeting,2005. IEDM
Technical Digest. IEEE International, pp.
459-462.
Fixed SyF
P  0.6
P = 1,
ideal, perfect spin valve
ITRS Emerging Technology Review, 12 July 2008
10
Contact: SJ Allen, [email protected]
Spin Torque Transfer: Science
J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling
barrier”, Phys. Rev. B, 39 6995 (1989).
dm
dt
Free

dm
  o m  H A
dt
m
dm

dt
Effective field
Damping
• Spin transfer torque
ITRS Emerging Technology Review, 12 July 2008
11
Contact: SJ Allen, [email protected]
Spin Torque Transfer: Science
J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling
barrier”, Phys. Rev. B, 39 6995 (1989).
dm
dt
dm
dt
Free

dm
  o m  H A
dt
Effective field
Fixed
J
e
m

dm

dt
Damping
B  J / e   P
t MS
B  J / e   P
t MS
  m   p  m 
m p
Slonczewski torque
Effective magnetic field
• Spin transfer torque
ITRS Emerging Technology Review, 12 July 2008
12
Contact: SJ Allen, [email protected]
Spin Torque Transfer: Science
J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling
barrier”, Phys. Rev. B, 39 6995 (1989).
dm
J
dt
• Precession
• Switching
• Damping
dm
dt
dm
dt
Free

dm
  o m  H A
dt
m
Fixed
-
J
e
• Spin transfer torque
ITRS Emerging Technology Review, 12 July 2008

Effective field
dm

dt
Damping
B  J / e   P
t MS
B  J / e   P
t MS
13
  m   p  m 
m p
Slonczewski torque
Effective magnetic field
Contact: SJ Allen, [email protected]
Spin Torque Transfer Technology
From R. A. Buhrman, “Spin Torque
Effects in Magnetic Nanostructures”,
Spintech IV, 2007
• Science
• Technology
Spin Torque Transfer – RAM, STT-RAM
Spin Torque Transfer Nano-oscillators
Spin logic devices
ITRS Emerging Technology Review, 12 July 2008
14
Contact: SJ Allen, [email protected]
GMR and STT --- STT-RAM
J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling
barrier”, Phys. Rev. B, 39 6995 (1989).
dm
J
dt
• Precession
• Switching
• Damping
dm
dt
dm
dt
Free

dm
  o m  H A
dt
m
Fixed
-
J
e
• Spin transfer torque
ITRS Emerging Technology Review, 12 July 2008

Effective field
dm

dt
Damping
B  J / e   P
t MS
B  J / e   P
t MS
15
  m   p  m 
m p
Slonczewski torque
Effective magnetic field
Contact: SJ Allen, [email protected]
GMR and STT --- STT-RAM
T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y.M. Lee, R. Sasaki,
Y. Gotot, K. Ito, T. Meguro, F. Matskura, H. Takahash, H. Matsuoka and H. Ohno,
“2 Mb SPRAM (Spin-Transfer Torque RAM) with bit-by-bit bi-directional current
write and parallelizing-direction current read”, IEEE J Solid-State Circuits, 43, 109
(2008).
~ 200 A
ITRS Emerging Technology Review, 12 July 2008
16
Contact: SJ Allen, [email protected]
Conventional MRAM (toggle) and
Spin Torque MRAM
Spin polarized current produces torque
to reverse free layer.
H field produces torque to reverse free layer.
•Isw < 1 mA/bit for 0.06 m x 0.12 m bit.
•Isw reduces as bit scales smaller.
•Need Isw ≈ 40 mA/bit for 0.4 um x 1.0 um.
•Isw constant for smaller bits.
ITRS Emerging Technology Review, 12 July 2008
17
Contact: SJ Allen, [email protected]
STT-RAM 2005
Free
Fixed SyF
M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K.
Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H.
Nagao, H. Kano, “A novel nonvolatile memory with spin torque
transfer magnetization switching: spin-ram”, Electron Devices
Meeting,2005. IEDM Technical Digest. IEEE International, pp. 459462.
ITRS Emerging Technology Review, 12 July 2008
18
Contact: SJ Allen, [email protected]
STT-RAM 2005
M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K.
Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H.
Nagao, H. Kano, “A novel nonvolatile memory with spin torque
transfer magnetization switching: spin-ram”, Electron Devices
Meeting,2005. IEDM Technical Digest. IEEE International, pp. 459462.
CMOS driver
100 A/100 nm
S. Ikeda, J.Hayakawa, Y.M. Lee, F. Matsukura, Y. Ohno, T.
Hanyu and H. Ohno, “Magnetic tunnel junctions for spintronic
memories and beyond”, IEEE Trans Elec. Dev. 54, 991 (2007).
ITRS Emerging Technology Review, 12 July 2008
19
Contact: SJ Allen, [email protected]
STT-RAM 2005
Read ~ 0.2 V < write!
M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K.
Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H.
Nagao, H. Kano, “A novel nonvolatile memory with spin torque
transfer magnetization switching: spin-ram”, Electron Devices
Meeting,2005. IEDM Technical Digest. IEEE International, pp. 459462.
CMOS sensing > 0.2 V
S. Ikeda, J.Hayakawa, Y.M. Lee, F. Matsukura, Y. Ohno, T.
Hanyu and H. Ohno, “Magnetic tunnel junctions for spintronic
memories and beyond”, IEEE Trans Elec. Dev. 54, 991 (2007).
ITRS Emerging Technology Review, 12 July 2008
20
Contact: SJ Allen, [email protected]
STT-RAM 2005
Sony
4 kb
M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K.
Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H.
Nagao, H. Kano, “A novel nonvolatile memory with spin torque
transfer magnetization switching: spin-ram”, Electron Devices
Meeting,2005. IEDM Technical Digest. IEEE International, pp. 459462.
S. Ikeda, J.Hayakawa, Y.M. Lee, F. Matsukura, Y. Ohno, T.
Hanyu and H. Ohno, “Magnetic tunnel junctions for spintronic
memories and beyond”, IEEE Trans Elec. Dev. 54, 991 (2007).
ITRS Emerging Technology Review, 12 July 2008
21
Contact: SJ Allen, [email protected]
STT-RAM 2007
115 x 180 nm2
Grandis, Inc.
STT-RAM cell with integrated CMOS
transistor. The area of a single-level STTRAM cell can be as small as 6 F2.
Y. Huai, Z. Diao, Y.Ding, A. Panchula, S. Wang, Z. Li, D. Apalkov, X. Luo,
H. Nagai, A. Driskill-Smith, and E. Chen, “Spin Transfer Torque RAM (STTRAM) Technology”, 2007 Inter. Conf. Solid State Devices and Materials,
Tsukuba, 2007, pp. 742-743.
S. Ikeda, J.Hayakawa, Y.M. Lee, F. Matsukura, Y. Ohno, T.
Hanyu and H. Ohno, “Magnetic tunnel junctions for spintronic
memories and beyond”, IEEE Trans Elec. Dev. 54, 991 (2007).
Courtesy of Yiming Huai
ITRS Emerging Technology Review, 12 July 2008
22
Contact: SJ Allen, [email protected]
STT-RAM 2007
Hitachi
T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y.M. Lee, R. Sasaki,
Y. Gotot, K. Ito, T. Meguro, F. Matskura, H. Takahash, H. Matsuoka and H. Ohno,
“2 Mb SPRAM (Spin-Transfer Torque RAM) with bit-by-bit bi-directional current
write and parallelizing-direction current read”, IEEE J Solid-State Circuits, 43, 109
(2008).
S. Ikeda, J.Hayakawa, Y.M. Lee, F. Matsukura, Y. Ohno, T.
Hanyu and H. Ohno, “Magnetic tunnel junctions for spintronic
memories and beyond”, IEEE Trans Elec. Dev. 54, 991 (2007).
Courtesy of Hideo Ohno
ITRS Emerging Technology Review, 12 July 2008
23
Contact: SJ Allen, [email protected]
GMR and STT --- STT-RAM
T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y.M. Lee,
R. Sasaki, Y. Gotot, K. Ito, T. Meguro, F. Matskura, H. Takahash, H.
Matsuoka and H. Ohno, “2 Mb SPRAM (Spin-Transfer Torque RAM) with
bit-by-bit bi-directional current write and parallelizing-direction current
read”, IEEE J Solid-State Circuits, 43, 109 (2008).
ITRS Emerging Technology Review, 12 July 2008
24
Contact: SJ Allen, [email protected]
STT-RAM
Projections vs State-of-the-art
A.Driskill-Smith, Y. Huai, “STT-RAM – A New Spin on Universal Memory”, Future Fab, 23, 28
Hitachi, 2007
Yes
1.6 x 1.6 m TMR 100 x 50 nm2 (60)
40 ns
100 ns
> 109
40 pJ/100ns
None
1.8 V
T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y.M. Lee, R. Sasaki,
Y. Gotot, K. Ito, T. Meguro, F. Matskura, H. Takahash, H. Matsuoka and H. Ohno,
“2 Mb SPRAM (Spin-Transfer Torque RAM) with bit-by-bit bi-directional current
write and parallelizing-direction current read”, IEEE J Solid-State Circuits, 43, 109
(2008).
ITRS Emerging Technology Review, 12 July 2008
25
Contact: SJ Allen, [email protected]
STT-RAM
Projections vs State-of-the-art
Nick Rizzo, Freescale
Toggle
MRAM
(180 nm)
Toggle
MRAM
(90 nm)*
DRAM
(90 nm)+
SRAM
(90 nm)+
FLASH
(90 nm)+
FLASH
(32 nm)+
ST
MRAM
(90 nm)*
ST
MRAM
(32 nm)*
cell size
(m2)
1.25
0.25
0.05
1.3
0.06
0.01
0.06
0.01
Read time
35 ns
10 ns
10 ns
1.1 ns
10 - 50 ns
10 - 50 ns
10 ns
1 ns
40 ns
Program
time
5 ns
5 ns
10 ns
1.1 ns
0.1-100 ms
0.1-100 ms
10 ns
1 ns
100 ns
Program
energy/bit
150 pJ
120 pJ
5 pJ
Needs
refresh
5 pJ
30 – 120 nJ
10 nJ
0.4 pJ
0.04 pJ
40 pJ
Endurance
> 1015
> 1015
> 1015
> 1015
> 1015 read,
> 106 write
> 1015 read,
> 106 write
> 1015
>1015
> 109
Nonvolatility
YES
YES
NO
NO
YES
YES
YES
YES
Yes
1.6 x 1.6 m TMR 100 x 50 nm2 (60)
T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y.M. Lee, R. Sasaki,
Y. Gotot, K. Ito, T. Meguro, F. Matskura, H. Takahash, H. Matsuoka and H. Ohno,
“2 Mb SPRAM (Spin-Transfer Torque RAM) with bit-by-bit bi-directional current
write and parallelizing-direction current read”, IEEE J Solid-State Circuits, 43, 109
(2008).
* 90nm, 32nm MRAM values are projected
+ These values are from the ITRS roadmap
ITRS Emerging Technology Review, 12 July 2008
Hitachi, 2007
26
Contact: SJ Allen, [email protected]
Information Requested (2/2)
STT - RAM
•
•
•
Current state-of-the-art using the provided metrics as a guide (Appendix 2 of
request for white papers)
CMOS integrated STT-RAM demonstrated. 2Mb
Key scientific and technological issues remaining to accept the technology for
manufacture.
Lower critical currents and larger TMR ratio. Quality of the tunnel junction is
critical.
Technology roadmap outlining a 5-15 year develop path leading to
manufacture in 5-10 years.
Replace MRAM. Embedded memory in logic applications. Longer term –
universal memory.
ITRS Emerging Technology Review, 12 July 2008
27
Contact: SJ Allen, [email protected]
Spin Transfer Torque Nano-oscillator
J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling
barrier”, Phys. Rev. B, 39 6995 (1989).
dm
J
dt
• Precession
• Switching
• Damping
dm
dt
dm
dt
Free

dm
  o m  H A
dt
m
Fixed
-
J
e
• Spin transfer torque
ITRS Emerging Technology Review, 12 July 2008

Effective field
dm

dt
Damping
B  J / e   P
t MS
B  J / e   P
t MS
28
  m   p  m 
m p
Slonczewski torque
Effective magnetic field
Contact: SJ Allen, [email protected]
Spin Transfer Torque Nano-oscillator
S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J. Schoelkopf,
R. A. Buhrman and D. C. Ralph, “Microwave oscillations of a nanomagnet
driven by a spin-polarized current”, Nature, 425,380 (2003).“
30 nmPt
2 nm Cu/
3 nm Co/
10 nm Cu/
40 nmCo/
80 nm Cu/
~ 0.1 nW measured
H
130 x 70 nm2
ITRS Emerging Technology Review, 12 July 2008
29
Contact: SJ Allen, [email protected]
Spin Transfer Torque Nano-oscillator
S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J. Schoelkopf, R. A. Buhrman and
D. C. Ralph, “Microwave oscillations of a nanomagnet driven by a spin-polarized current”,
Nature, 425,380 (2003).“
30 nmPt
2 nm Cu/
3 nm Co/
10 nm Cu/
40 nmCo/
80 nm Cu/
~ 0.1 nW measured
H
130 x 70 nm2
Key element: A skew magnetic field !
ITRS Emerging Technology Review, 12 July 2008
30
Contact: SJ Allen, [email protected]
Spin Transfer Torque Nano-oscillator
~ 0.1 nW measured
30 nmPt
2 nm Cu/
3 nm Co/
10 nm Cu/
40 nmCo/
80 nm Cu/
H
130 x 70 nm2
Cu junction
R  13 
R  0.1 
I DC  2.0 mA
ITRS Emerging Technology Review, 12 July 2008
2
Pmax
2
11
  50  1
  I DC  R  

2 2
  R  50  50
~ 0.2 nW estimated max.
Efficiency
31
10 6
Contact: SJ Allen, [email protected]
Spin Transfer Torque Nano-oscillator:
Injection Locking
W. H. Rippard, M. R. Pufall, S. Kaka, T. J. Silva, S. E. Russek, J. A. Katine, “Injection Locking
and Phase Control of Spin Transfer Nano-oscillators”, Phys. Rev. Lett., 95, 067203 (2005).
1 nm Au
1 nm Cu/
5 nm NiFe/
4 nm Cu/
20 nm CoFe/
50 nmCu/
5 nm Ta/
~ 30 pW
50 x 50 nm2
0.56 Tesla
ITRS Emerging Technology Review, 12 July 2008
32
Contact: SJ Allen, [email protected]
Spin Transfer Torque Nano-oscillator:
Frequency Modulation
M. R. Pufall, W. H. Rippard, S. Kaka, T. J. Silva, and S. E. Russek
“Frequency modulation of spin-transfer oscillators” Appl. Phys. Lett. 86, 082506 (2005).
~ 250 pW
ITRS Emerging Technology Review, 12 July 2008
33
Contact: SJ Allen, [email protected]
Spin Transfer Torque Nano-oscillator:
Phase Locking
S. Kaka, M.R. Pufall, W.H. Rippard, T.J. Silva, S.E. Russek and
J.A. Katine, “Mutual phase-locking of microwave spin torque nanooscillators” Nature, 437, 389 (2005).
ITRS Emerging Technology Review, 12 July 2008
34
~ 2 pW
Contact: SJ Allen, [email protected]
Spin Transfer Torque Nano-oscillator:
B=0.0
dm
  o m  H A
Effective field, shape, material
dt
  J / e  P
 B
  m   p  m    Slonczewski torque
t  MS
dm

dt
B  J / e   P
 m p
t  MS
m
T. Devoldera, A. Meftah, K. Ito, J. A. Katine, P. Crozat and C.
Chappert, “Spin transfer oscillators emitting microwave in
zero applied magnetic field”, J. Appl. Phys. 101, 063916
2007.
< 1.0 pW
Damping
Effective magnetic field
   0.05
Fixed layer
Free
ITRS Emerging Technology Review, 12 July 2008
35
Contact: SJ Allen, [email protected]
Spin Transfer Torque Nano-oscillator:
Power issues?
Some measures:
Cell phone – 900 MHz, 1.8GHz,
~ 500 mW
Wireless access points – 2.4 GHz, 5.0 GHz, ~ 25 mW
Automotive radar 24 GHz, 100 GHz
~ 10 mW
State of the art STT nano-oscillators
External magnetic field,
ITRS Emerging Technology Review, 12 July 2008
36
~ nW, efficiency 10-6
Contact: SJ Allen, [email protected]
Spin Transfer Torque Nano-oscillator
30 nmPt
2 nm Cu/
3 nm Co/
10 nm Cu/
40 nmCo/
80 nm Cu/
MgO tunnel barrier
R  100 
R  100 
I DC  1 mA
MgO
tunnel barrier
2
Cu junction
R  13 
R  0.1 
I DC  2.0 mA
ITRS Emerging Technology Review, 12 July 2008
Pmax
2
11
  50  1
  I DC  R  

2 2
  R  50  50
~ 1 W estimated
Efficiency
37
10 2
Contact: SJ Allen, [email protected]
Spin Transfer Torque Nano-oscillator:
Power issues?
Some measures:
Cell phone – 900 MHz, 1.8GHz,
~ 500 mW
Wireless access points – 2.4 GHz, 5.0 GHz, ~ 25 mW
Automotive radar 24 GHz, 100 GHz
~ 10 mW
State of the art STT nano-oscillators
External magnetic field,
~ nW, efficiency ~ 10-6
Projection
MTJ based STT nano-oscillators
~ W, efficiency ~ 10-2 ?
Power combining ?
But touch base with the Cornell, NIST, UVa collaboration
ITRS Emerging Technology Review, 12 July 2008
38
Contact: SJ Allen, [email protected]
Information Requested (2/2)
STT Nano-oscillators
•
•
•
Current state-of-the-art using the provided metrics as a guide (Appendix 2 of
request for white papers)
Nano-oscillators at the nano-picowatt level with spin valve structures, in
external magnetic fields. Existence proof of approach to external magnetic
field free sustained oscillation. Phase locking, frequency modulation,
injection locking demonstrated.
Key scientific and technological issues remaining to accept the technology for
manufacture.
Increased power. Use of magnetic tunnel junctions. Power combining.
Technology roadmap outlining a 5-15 year develop path leading to
manufacture in 5-10 years.
Needs to be guided by potential applications.
ITRS Emerging Technology Review, 12 July 2008
39
Contact: SJ Allen, [email protected]
“MRAM” --- Spin Logic Device
• Current controlled
• Non-volatile
R
~6
• “Leaky” switch,
Mark Rodwell, UC Santa Barbara
High
R
R
Isignal
Gate
Current Gate
Insulator
B
Field
Source
Ru 15nm
I
B
Field
Ta 5nm
Ferromagnetic CoFeB 3nm
Magnetization
MgO 1.5nm Tunnel Barrier
Eli Yablonovitch, UC Berkeley
Ferromagnetic CoFeB 3nm
Ru 0.8nm
CoFe 2nm
Antiferromagnetic MnIr 8nm
I
source
“transpinnor”
NiFe 5nm
Ta 5nm
Ru 50nm
Drain
R
Ta 5nm
Si (001) Substrate
Device Area  1?m2
drain
Ikeda et. al., Japanese Journal of Applied Physics, Vol. 44,
No 48, pp. L1442-L1445
I
ITRS Emerging Technology Review, 12 July 2008
40
Contact: SJ Allen, [email protected]
Two views - Spin Logic
Output Power = 1.6*10-8 W
Total Power = 2.5*10-8 W
Efficiency=65%
R
High
Eli Yablonovitch
+V +3mV
I
Mark Rodwell
2.275kΩ
or
500Ω
5μA input
Iss
5μA output
Iinput
Iss
input
Ioutput
Inverter
Complementary
Transpinnor logic
Ioutput
output
High
High
-V -3mV
Iss
•Problems:
On/Off ratio is only about 5:1
Still takes too many Amps to switch
ITRS Emerging Technology Review, 12 July 2008
Iss
High
High
500Ω
or
2.275kΩ
Iinput
41
Three state circuits
• memory and logic
• clocked logic
• “0” static dissipation
Contact: SJ Allen, [email protected]
“MRAM” --- Spin Logic Device
• Current controlled
• Non-volatile
R
~6
• “Leaky” switch,
Mark Rodwell, UC Santa Barbara
High
R
R
Isignal
Gate
Current Gate
Insulator
B
Field
Source
Ru 15nm
I
B
Field
Ta 5nm
Ferromagnetic CoFeB 3nm
Magnetization
MgO 1.5nm Tunnel Barrier
Eli Yablonovitch, UC Berkeley
Ferromagnetic CoFeB 3nm
Ru 0.8nm
CoFe 2nm
Antiferromagnetic MnIr 8nm
I
source
“transpinnor”
NiFe 5nm
Ta 5nm
Ru 50nm
Drain
R
Ta 5nm
Si (001) Substrate
Device Area  1?m2
drain
Ikeda et. al., Japanese Journal of Applied Physics, Vol. 44,
No 48, pp. L1442-L1445
I
ITRS Emerging Technology Review, 12 July 2008
42
Contact: SJ Allen, [email protected]
GMR and STT --- Spin Logic Device?
Can we control GMR by
Magnetostatically coupling to a
STT switch ??
Mark Rodwell, UC Santa Barbara
High
R
GMR – “switch”
STT – “switch control”
I
Eli Yablonovitch, UC Berkeley
I
source
“transpinnor”
Contact
Fixed
R
Contact
drain
Contact
I
ITRS Emerging Technology Review, 12 July 2008
Contact
Magnetostatically coupled free layers
43
Contact: SJ Allen, [email protected]
GMR and STT --- Spin Logic Device?
Can we control GMR by
Magnetostatically coupling to a
STT switch ??
GMR – “switch”
Contact
O. Ozatay,a_ N. C. Emley, P. M. Braganca, A. G. F. Garcia, G. D.
Fuchs, I. N. Krivorotov,R. A. Buhrman, and D. C. Ralph, “Spin
transfer by nonuniform current injection into a nanomagnet”, Appl.
Phys. Lett., 88, 202502 (2006).
STT – “switch control”
Contact
Fixed
Contact
Contact
Magnetostatically coupled free layers
ITRS Emerging Technology Review, 12 July 2008
44
Contact: SJ Allen, [email protected]
GMR and STT --- Spin Logic Device?
Input
Current driven
Clocked logic
Inherent memory,
ISS → 0,
no change in input of next stage
Output
ISS
Iss
input
ISS
High
High
output
High
High
M. Rodwell
Inverter
Output
Iss
ITRS Emerging Technology Review, 12 July 2008
45
Input
Contact: SJ Allen, [email protected]
GMR and STT --- Spin Logic Device?
O utput
A Input
IS S
B Input
M. Rodwell NAND
Current controlled
Clocked logic
3-state, nonvolatile
F
IS S
Cell 100F2
Energy per bit ~ 4* STT-RAM
Switching speed
slower than STT-RAM
Input
Input
O utput
ITRS Emerging Technology Review, 12 July 2008
46
Contact: SJ Allen, [email protected]
Information Requested (2/2)
GMR-STT Spin logic devices
•
Current state-of-the-art using the provided metrics as a guide (Appendix 2 of
request for white papers)
“Straw man” concepts, synergistic with STT-RAM developments
•
Key scientific and technological issues remaining to accept the technology for
manufacture.
Demonstration of magneto-static proximity coupling of GMR device and STT
switch
•
Technology roadmap outlining a 5-15 year develop path leading to
manufacture in 5-10 years.
Premature
ITRS Emerging Technology Review, 12 July 2008
47
Contact: SJ Allen, [email protected]
Spin Torque Transfer Technology
A perspective:
STT-RAM will be developed for
memory embedded in logic applications.
STT Nano-oscillators development needs to
guided by potential application.
Research on potential STT Logic will be
leveraged by developments in STT-RAM
ITRS Emerging Technology Review, 12 July 2008
48
Contact: SJ Allen, [email protected]