Taking Lessons From Thiamine Catalytic Umpolung Reactivity
Download
Report
Transcript Taking Lessons From Thiamine Catalytic Umpolung Reactivity
Taking Lessons from
Thiamine
Catalytic Umpolung Reactivity of Aldehydes
Louis-Charles Campeau
University of Ottawa
Dept. of Chemistry
Center for Catalysis Research and Innovation
Taking Lessons From Thiamine
Millions of Years
of Evolution
O
O
NH
Ph
Et
Me
O OH
OH
Molecular Complexity
(azaspirene)
Efficient and
Stereo/RegioControlled Bond
Formation
Enzymes
Novel Methods
and Catalysts
2
Taking Lessons From Thiamine
Millions of Years
of Evolution
O
O
NH
Ph
Et
Me
O OH
OH
Molecular Complexity
(azaspirene)
Efficient and
Stereo/RegioControlled Bond
Formation
Enzymes
Novel Methods
and Catalysts
Understanding
Chemical Biology
3
Taking Lessons From Thiamine
O
O
O
(S)-Proline
O
O
O
O
O
OH
NH
Ph
Et
Me
O
-H2O
Millions of Years
of Evolution
O OH
OH
Molecular Complexity
(azaspirene)
Efficient and
Stereo/RegioControlled Bond
Formation
Aldolase
Proline Based
Catalysis
Organocatalysis
Understanding
Chemical Biology
4
Taking Lessons From Thiamine
Millions of Years
of Evolution
O
O
NH
Benzoin/Stetter
Reactions
Ph
Et
Me
O OH
OH
Molecular Complexity
(azaspirene)
Efficient and
Stereo/RegioControlled Bond
Formation
Transketolase
Carbene
Catalysis
Organocatalysis
Thiamine
Understanding
Chemical Biology
5
Overview
Umpolung Reactivity
Benzoin Reaction
Catalytic Cycle
Recent developments
O
O
R
R
H
1
R'
2
OH
Stetter Methodology
Aldehyde Umpolung
Catalytic Cycle
The Early Years: Hirsutic Acid C
HO2C 11
Recent developments
Conclusions
Acknowledgements
OH
H
3
2
9
O
H
6
Umpolung Reactivity
“Umpolung” is derived from German meaning “inverse
polarity”
Any process by which the normal alternating donor
and acceptor reactivity pattern of a chain is
interchanged, do to the presence of O or N
heteroatoms.
HO
R
This original meaning of the term has been extended to the reversal
of any commonly accepted reactivity pattern.
Nu
H
Nu
Umpolung
O
R
H
Electrophilic center
IUPAC Compendium of Chemical Terminology, 2nd Edition (1997).
O
O
E
R
R
E
Nucleophilic center
7
“Umpolung Chemistry” of
Aldehydes
Umpolung reactivity allows chemists to look at
bond disconnections in new ways
O
R
OH
3
1
O
R'
R
5
R'
R
1
O
R'
R
2
OH
1
4
R'
O
O
O
H
1
O
O
R'
R'
Aldol
OM
Michael
R
D. Seebach, Angew. Chem. Int. Ed., 1979, 18, 239
?
8
“Umpolung Chemistry” of
Aldehydes
Umpolung reactivity allows chemists to look at
bond disconnections in new ways
O
R
OH
3
1
O
R'
R
5
R'
R
Aldol
OM
R'
1
R
2
H
D. Seebach, Angew. Chem. Int. Ed., 1979, 18, 239
4
R'
O
R'
R'
Michael
R
1
O
O
R'
R'
O
OH
O
O
H
1
O
O
O
R
9
Stochiometric Methods
Cyanohydrins as aldehyde umpolung
Homologation and its reversal
1. HCN
2. Protection
O
R
NC OP Strong Base
R
H
H
NC OP
R
R'CHO
O
R'
R
OH
D. Seebach, Angew. Chem. Int. Ed., 1979, 18, 239
1) Deprotection
NC OP
R
2) Retro-Cyanation
R'
OH
10
Cyanohydrins as Aldehyde Umpolung
O
H
1) DIBAl-H
O
EEO
2) HCN, EtOH HO
3) 50% AcOH
H
HO
THF
H
CN
EEO
O
1) TsCl, Py
2) CH2CHOEt,
PPTS
O CN H
H
TsO
EEO
HO
H
EEO
H
2) L-Selectride
THF
H
H
1) 50% AcOH-THF
KHMDS, PhH
reflux (72%)
HO CN H
H
COOH
Me
H
HO
OH
Prostaglandine F2
G. Stork, T. Takahashi, I. Kawamoto, T. Suzuki, J. Am. Chem. Soc., 1978, 100, 8272
11
Stochiometric Methods
Dithianes as aldehyde umpolung
Heteroatom exchange
O
R
SH
HS
H
BF3-Et2O
S
R
S
H
Strong Base
O
R
R'
1) R'CHO
OH
D. Seebach, Angew. Chem. Int. Ed., 1979, 18, 239
2) Dithiane
Removal
S
R
S
12
Dithianes as Aldehyde Umpolung
OH
O
OTBDPS
OTBDPS
CH2(CH2SH2)2
O
H
OTIPS
O
OMe O
TiCl4, DCM
O
O
S
S
O
H
i-Bu
OTIPS
Leucascandrolide A
then...
t
TIPSO
I
O
BuLi, HMPA
THF -78ºC
OTIPS
OTBDPS
i-Bu
1) PhI(O2CCF3)2
MeOH/H2O/THF
O
SS
TIPSO
OH
2) L-Selectride
THF
O
i-Bu
O
O
OTIPS
OTBDPS
TIPSO
P. Wipf and J.T. Reeves, Chem. Comm. 2002, 2066
13
Catalytic Methods
Introduction to the benzoin reaction
Nucleophilic acylation reactions catalyzed by
lyases (transketolase) in the presence of
coenzyme thiamine.
H2N
Umpolung
Catalyst
O
Ph
H
N
O
Ph
CH3
N
*
Ph
H3C
N
OH
Cl
S
HO
Thiamine
(vitamin B1)
D. U. Nilsson, L. Meshalakina, Y. Lindqvist, G. Schneider, J. Biol. Chem., 1997, 272, 1864
14
Nature’s Way
H2N
N
CH3
N
H3C
O
OH OH
HO
O PO3
Cl
S
HO
OH OH
N
O
Thiamine
OH
HO
O PO3
Sedoheptulose-7P
OH
Xylulose-5P
OH
OH OH
O
H
O PO3
OPO3
O
OH
Glyceraldehyde-3P
Ribose-5P
"
O
"
HO
Synthon
D. Enders & T. Balensiefer, Acc. Chem. Res, 2004, 37, 534
U. Nilsson, L. Meshalakina, Y. Lindqvist, G. Schneider, J. Biol. Chem., 1997, 272, 1864
15
Catalytic Vitamins
Ph
O
*
O
Ph
R2
R1
N
R3
S
Ph
H
OH
R2
R3
R1
O
N
S
-H
R1
N
R2
Ph
OH
Ph
R2
S
R3
R1
N
H
O
Ph
H
R3
R2
R1
OH
N
Ph
R3
S
S
R2
R1
N
R3
S
OH
R2
R1
N
S
R3
Breslow Intermediate
Ph
OH
Ph
O
Ph
R. Breslow, J. Am. Chem. Soc., 1958, 80, 3719
T. Ukai, R Tanaka, T. Dokawa, J. Pharm. Soc. Jpn., 1943, 63, 296
O
Ph
H
16
Benzoin Reaction – Early Years
O
Ph
BzO
H3C
H
MeOH, Et3N
30ºC
CH3
N
S
N
Ph
*
Ph
OH
H3C
CH3
H3C
O
10 mol% catalyst
H3C
S
N
S
H3C
H3C
N
S
9% yield
12% yield
6.1% yield
78% yield
22.5% ee
0% ee
51.5% ee
7.8% ee
J.C. Sheehan, D.H. Hunneman, J. Am. Chem. Soc., 1966, 88, 3666
J.C. Sheehan, T. Hara, J. Org. Chem., 1974, 39, 1196
17
Triazolium Catalysts
1 (1.25mol%)
O
Ar
Triazolium catalysts give better yield and
selectivity
H
K2CO3, THF
22-72%
Proposed Transition State
O
Ar
Ar
Si face
OH
ee 20-86%
O
H
Ph
N N
HO
ClO4
N
Ph
O
Si attack
N N
N
Ph
O
O
O
1
D. Enders, K. Breuer, J.H. Teles, Helv. Chim. Acta, 1996, 79, 1217
Re attack
18
Alternative Catalysts
O
Ph
O
catalyst
Ph
H
* Ph
OH
Leeper
O
Rawal
TBSO
TBSO
Ph
Ph
N
N
N
N
S
S
34% yield
19.5% ee
20% yield
10.5% ee
Ts
N
O
S
50% yield
20.5% ee
R.L. Knight, F.J. Leeper, Tetraheron Lett., 1997, 38, 3611
C.A. Dvorak, V.H. Rawal, Tetrahedron Lett., 1998, 39, 2925
R.L. Knight, F.J. Leeper, Perkin Trans. 1, 1998, 1891
N
N
Ph
45% yield
80% ee
Ph
N
S
52% yield
48% ee
19
New Triazolium Catalyst
O
O
Ph
N N
3 Steps
NH
O
BF4
N
50% overall
Me3OBF4
DCM
quant.
a) HBF4, DCM, rt
b) HC(OMe)3, MeOH, 80ºC
65%
N NHPh
OMe
O
N
PhNHNH2, Et3N
O
NH
THF
77%
D. Enders, U. Kallfass, Angew. Chem. Int. Ed., 2002, 41, 1743
20
Catalyst Activity
cat. (10mol%)
KOtBu, THF
O
Ar
O
Ar
Ar
H
Ph
N N
8-83%
cat. =
N
O
OH
BF4
80-95% ee
Substrate
Loading (mol%)
Temperature (ºC)
10
18
81
83
10
0
61
91
H
10
18
8
95
H
10
18
83
90
Yield (%)
ee (%)
O
H
F
O
MeO
O
D. Enders, U. Kallfass, Angew. Chem. Int. Ed., 2002, 41, 1743
21
“Cross Benzoin” Reaction
O
O
O
R1
R2
H
O
R2
R1
H
R1
R1
OH
OH
O
catalyst
R2
Usually Observed!!
O
R1
R2
OH
Cross benzoin
adducts
R2
OH
Homo benzoin
adducts
X. Linghu, J.S. Johnson, Angew. Chem. Int. Ed., 2003, 42, 2534
22
Inefficiency of Cross-Benzoin
Methodology
R1
O
*
O
O
or
R2
R1
H
R2
C N
OH
O
H
R1
NC
H
O
NC
OH
R1
R2
NC
OH
Ph
OH
R1
NC
O
R2
O
O
or
R2
H
R1
H
23
Inefficiency of Cross-Benzoin
Methodology
O
O
or
R1
R1
O
R1
H
R2
C N
OH
O
H
R1
NC
O
NC
OH
R1
H
R1
There is a lack of
control because the
more electophilic
aldehyde reacts
first!!!
NC
OH
Ph
OH
R1
NC
O
R1
O
O
or
R1
H
R2
H
24
Silyl-Benzoin Reaction to the
Rescue!
O
O
R1
H
O
SiEt3
KCN/
[18]crown-6
(cat.)
OSiEt3
R1
R2
only one adduct!!
OSiEt3
OMe
O
Cl
R2
Cl
O
O
OSiEt3
OSiEt3
MeO
80% yield
80% yield
Me
Me
O
O
Me
OSiEt3
66% yield
Cl
85% yield
X. Linghu, J.S. Johnson, Angew. Chem. Int. Ed., 2003, 42, 2534
O
OSiEt3
75% yield
25
Catalytic Cycle of Silyl Benzoin
NC O
H
R1
Fast and Reversible
R1CHO
CN
O
R2
NC O
SiEt3
cyanation
R2
SiEt3
[1,2] Brook
rearrangement
Irreversible
N
C
CN
R2
OSiEt3
R2
OSiEt3
O
CN
NC O
O
R2
R1
R1
OSiEt3
retrocyanation
OSiEt3
R2
1,4-silyl
migration
R1
X. Linghu, J.S. Johnson, Angew. Chem. Int. Ed., 2003, 42, 2534
H
NC OSiEt3
O
R2
R1
26
Chiral Metallophites in Silyl Benzoin
O
O
Ph
phosphite (5mol%)
n-BuLi (5mol%)
H
SiEt3
Ph
THF, 0.5hrs
MeO
OSiEt3
O
P
EtO Li
EtO
Me
Me
100% conv.
*
O
P OLi
R2
SiEt3
[1,2] Brook
rearrangement
OMe
O
*
R2
Ar Ar
O O
O
P
O Li
O
Ar Ar
F
Ar =
100% conv.
90% ee
O
P O
Li
R1
H
*
OSiEt3
Chiral
Nucleophile
X. Linghu, J.R. Potnick, J.S. Johnson, J. Am. Chem. Soc., 2004, 126, 3070
O
P OSiEt3
OLi
R2
H R1
O
R2
R1
OSiEt3
27
TimeLine
Ph
BzO
Me
X
N
N
S
R
Sheehan
First Chiral
Carbenes
1966
1958
Breslow
Catalytic Cycle
R
N
OH
S
Ar
H
H
Leeper/Rawal
Bicyclic Cat.
1974
1997-98
1996
Enders
Triazolium
up to 86%ee
2002-04
Johnson
Cross-Benzoin
O
Ph
R
N N
N
Ph
O
O
SiEt3
Enders
90%ee Benzoin
O
N
N
N Ph
28
Back To The Future!!
Benzoin Methodology
1966
1958
Breslow
Catalytic Cycle
R
N
OH
S
Ar
1974
1976
1997-98
1996
2002-04
29
Other Electrophiles?
Can other electrophiles be used to give rise to
other umpolung products
OH
O
Ph
Ph
R2
X
Y
N
H
R1
Electrophile
O
Ph
E
R3
Breslow
Intermediate
30
Stetter Reaction
O
O
S
R2
N
R4
O
Ph
H
R3
O
OH
O
S
Ph
R2
N
Base
R4
O
R1
OR
R1
OR
*
Ph
R1
R
Ph
R1
R3
R1
R
*
O
O
CN
Ph
*
CN
R1
H. Stetter, H. Kuhlmann, Chem. Ber., 1976, 109, 2890
H. Stetter, Angew. Chem. Int. Ed., 1976, 15, 639
31
First Intramolecular Stetter
Trost & co-workers published the first
stereocontrolled synthesis of Hirsutic Acid C
Sesquiterpene with antibiotic
and antimitotic activity
7 chiral centers
H
Me
O
Me
HO2C 11
MeO2C
H
OH
H
TL, 1974, 3745
(Matsumoto)
3
2
9
O
H
Hirsutic Acid C
B.M. Trost, C.D. Shuey, F. DiNinno Jr., S.S. McElvain, J. Am. Chem. Soc., 1979, 101, 1284
32
OH
H
Hirsutic Acid C
HO2C 11
3
2
9
O
H
Hirsutic Acid C
O
O
H CN
O
TMS
O
Br
LDA, -30ºC
THF
O
KOH, MeOH
88%
TMS
NC
2) CO2, then CH2N2
NC
NEt3 (8 equiv.)
PhMe, reflux, 12h
2.5% HCl (aq)
CO2Me
O
H
1) LDA, TMEDA
THF, -78C
O
O
O
PhH, reflux 6h
88%
NC
O
70%
NC
CO2Me
NC
2
11
NC
CO2Me
O H
B.M. Trost, C.D. Shuey, F. DiNinno Jr., S.S. McElvain, J. Am. Chem. Soc., 1979, 101, 1284
CO2Me
33
OH
H
Hirsutic Acid C
3
2
HO2C 11
9
O
H
Hirsutic Acid C
5% Pd, BaCO3
1 atm H2
NC
NC
NC
BrZn
CO2Et
H
O
H
CO2Me EtOH/EtOAc
80%
NC
NaOMe, MeOH
rt, 3hrs
77%
H
PhH, Et2O,
CO2Me reflux, 15min.
1)BH3-THF, 0ºC
THF
H
MeO2C
O
9
HOOC
2) Ac2O, Py, rt
89%
1) K2CO3, MeOH
0ºC, 2hrs
79%
NC
H
CO2Me
2) PCC, DCM
OAc
rt, 88%
NC
EtO2C
O
H
O
1)NBS, CCl4
reflux 30min
H
OAc
CO2Me
2) LiBr, Li2CO3,
DMF, 130ºC, 20min
NC
H
CHO
CO2Me
B.M. Trost, C.D. Shuey, F. DiNinno Jr., S.S. McElvain, J. Am. Chem. Soc., 1979, 101, 1284
34
Hirsutic Acid C
OH
H
3
2
HO2C 11
9
O
H
Hirsutic Acid C
S I
NC
Me
H
CHO
Me
H
Me
MeO2C
Me
Me
11
3
MeO2C
H
2
9
O
O
O
Me
H
O
MeO2C
NC
(2.3 eq.)
NEt3 (50eq.)
iPrOH, reflux
5h
67%
CO2Me
H
N
OH
Me
H
OH
HMe
O
Me
Me
MeO2C
O
TL, 1974, 3745
(Matsumoto)
B.M. Trost, C.D. Shuey, F. DiNinno Jr., S.S. McElvain, J. Am. Chem. Soc., 1979, 101, 1284
MeO2C
O
H
Hirsutic Acid C
35
Intramolecular Variant
Ciganek & co-workers reported the first
study of the intramolecular variant
Enders & co-workers reported the first
asymmetric intramolecular Stetter reaction
R
O
O
cat. (20mol%)
K2CO3, THF
CHO
CO2R
44-73%
Ph
N N
N
CO2R
R
O
ee = 41-74%
E. Ciganek, Synthesis, 1995, 1311
D. Enders, K. Breuer, J. Runsink, Helv. Chim. Acta, 1996, 79, 1899
cat. =
O
H3C
Ph
O
CH3
36
New Highly Enantioselective Catalyst
O
cat. (20mol%)
KHMDS (20mol%)
CHO
CO2Et
CO2Et xylenes, 25ºC, 24hrs
O
O
N
O
N BF4
N Ph
N
O
O
N Cl
N Ph
N
N BF4
N Ph
Ph
0% yield
27% yield
O
N
N
Cl
N Ph
85% yield
79% ee
O
N
90% ee
N BF4
N Ph
Ph
48% yield
80% ee
58% yield
M.S. Kerr, J.R. de Alaniz, T. Rovis, J. Am. Chem. Soc., 2002, 124, 10298
95% ee
37
Catalyst Optimization
Structural modifications were made to
improve the yield of the reaction
O
N
N
N
O
N
H
N
N
Cl
60% yield
91% ee
58% yield
95% ee
O
N
N
N
OMe
94% yield
94% ee
M.S. Kerr, J.R. de Alaniz, T. Rovis, J. Am. Chem. Soc., 2002, 124, 10298
38
Scope of the Intramolecular
Stetter Reaction
cat. (20mol%)
KHMDS (20mol%)
CHO
R
X
CO2R
xylenes, 25ºC, 24h
O
CO2R
R
X
O
O
Me
O
CO2Et
CO2Et
CO2Et
O
O
O
Me
80% yield
97% ee
OMe
90% yield
84% ee
O
O
O
63% yield
96% ee
CO2Me
CO2Et
CO2Et
S
95% yield
87% ee
N
Me
64% yield
82% ee
M.S. Kerr, J.R. de Alaniz, T. Rovis, J. Am. Chem. Soc., 2002, 124, 10298
N
CO2Me
72% yield
84% ee
39
Effect of the Michael Acceptor
O
N BF4
N N
O
(20mol%)
KHMDS (20mol%)
CHO
EWG
O
xylene, 25ºC, 24h
O
O
OEt
58% yield
95% ee
N
78% yield
75% ee
M.S. Kerr, T. Rovis, Synlett, 2003, 12, 1934
EWG
O
O
NH2
0% yield
95% recovered SM
O
H
0% yield
0% recovered SM
Et
90% yield
92% ee
only 1h!
NO2
0% yield
0% recovered SM
40
Quaternary Carbon Centers
Can we overcome the low reactivity when
forming quaternary carbon centers??
S I
CN
MeO2C
Me
N
OH
Me
NEt3 (50eq.)
iPrOH, reflux
5h
67%
CHO
CN
(2.3 eq.)
O
OH
H
HO2C
MeO2C
O
H
Hirsutic Acid C
B.M. Trost, C.D. Shuey, F. DiNinno Jr., S.S. McElvain, J. Am. Chem. Soc., 1979, 101, 1284
41
Catalytic Formation of Quaternary
Carbon Centers
O
cat. (20mol%)
KHMDS (20mol%)
Et
O
O
N
CO2Me
Et
CO2Me
PhMe, 25ºC, 24h
O
N BF4
N
O
N
O
O
N BF4
N
N
N
N
F
BF4
F
H
OMe
F
45% yield
99% ee
F
80% yield
99% ee
M.S. Kerr, T. Rovis, J. Am. Chem. Soc., 2004, 126, 8876
F
85% yield
99% ee
42
Aromatic Series : Scope
O
F
BF4
F
F
F (20mol%)
KHMDS (20mol%)
O
R
EWG
X
N F
N N
O
R
2 eq NEt3, PhMe, 25ºC, 24h
O
O
O
Et
O
Me
Et
CO2Me
S
96% yield
97% ee
CO2Et
CO2Me
95% yield
92% ee
O
95% yield
99% ee
O
Ph
O
O
Ph
Me
O
55% yield
99% ee
M.S. Kerr, T. Rovis, J. Am. Chem. Soc., 2004, 126, 8876
EWG
X
Me
O
43
Aliphatic Series: Scope
O
N F
N N
F
BF4
F
F
F (20mol%)
KHMDS (20mol%)
O
R
EWG
O
R
2 eq NEt3, PhMe, 25ºC, 24h
EWG
O
O
O
Me O
Me O
i-Bu
Ph
O
N
NO2
85% yield
96% ee
90% yield
84% ee
O
81% yield
95% ee
O
Me
O
Me
O
Me
81% yield
95% ee
M.S. Kerr, T. Rovis, J. Am. Chem. Soc., 2004, 126, 8876
Ph
63% yield
99% ee
44
Catalytic Cycle : Revisited
Ph
O
*
O
Ph
EWG
N
N
R
N
N
O
4
N
N
*
Ph
H
N
R
Ph
N
H
O
EWG
1
N
N
N
N
HO
*
Ph
Ph
N
3
N
Ph
OH
N
OH
2
R
EWG
J.R. de Alaniz, T. Rovis, submitted
N
N
R
EWG
45
Re-investigating the Mechanism
What is the rate limiting step?
C-C Bond formation – Ketones Were Faster…
O
Bn
D
O
N BF4
N N Ph
O
H
CO2Et
20mol%
CO2Et
KHMDS 20mol%
PhMe
O
H
CO2Et
D
H
H
O
H
O
dr = 3:1
kH/kD = 3.8
Primary Kinetic Isotope Effect Observed
Indicates C-H or X-H Bond Cleavage at the rate
determining step
J.R. de Alaniz, T. Rovis, submitted
46
Catalytic Cycle : Reloaded
Ph
*
O
O
D
Ph
EWG
N
N
R
N
N
O
4
N
N
*
Ph
D
D
N
R
Ph
N
D
O
EWG
1
Could be Rate-Limiting
N
N
Could be Rate-Limiting
N
N
DO
*
Ph
Ph
N
J.R. de Alaniz, T. Rovis, submitted
N
Ph
OD
N
OD
2
R
EWG
3
N
N
R
EWG
47
Deuterium NMR Studies
N
O
Bn
O
20mol%
D
O
CO2Et
H
H
Bn
N
N Ph
CO2Et
O
H
J.R. de Alaniz, T. Rovis, submitted
CO2Et
TMS
H
+
CO2Et
D
H
PhMe
H
+
D
O
20mol%
D
O
O
PhMe
N
CO2Et
D
KHMDS 20mol%
O
O
N BF4
N Ph
O
O
H
N
D
TMS
CO2Et
H
+
D
O
48
Diastereoselective Protonation
TMS
N
H N
N
N
TMS
O
O
H
N
N
DH
H OEt
D
OEt
H
O
D N
TMS
H
N
N
O
D H
O
OEt
OEt
O
O
O
H
HH
O
O
N
O
O
TMS
TMS
N
N
O
TMS
DH
O
OEt
H
O
major diastereomer
Accounts for presence of D-HMDS and less
than 100% deuterium incorporation
J.R. de Alaniz, T. Rovis, submitted
49
Diastereoselective Protonation
TMS
N
H N
N
N
TMS
O
O
N
DH
TMS
H OEt
N
N
O
N
H
D N
OEt
D H
D N
N
TMS
O
J.R. de Alaniz, T. Rovis, submitted
O
O
OEt
O
dr = 3:1
N
H D
OD
OEt
H
OEt
TMS
N
N
DH
O
H
H
O
OEt
O
O
O
TMS
H
N
N
O
HH
O
TMS
D
O
O
TMS
O
H
N
TMS
N
N
N
TMS
O
H D
O
H
OEt
O
50
Diastereoselective Protonation
N
N
N
O
Absence of
KHMSD
D
OEt
O
H
O
N
N
N
O
O
D H
O
OEt
O
H
H
O
DH
OEt
O
dr = 9:1
Potential for generating two contiguous chiral
centers with one catalytic reaction !!!
J.R. de Alaniz, T. Rovis, submitted
51
Setting Contiguous Stereocenters
O
CO2Et
O
20 mol% cat.
H
CO2Et
Me
Me
PhMe, 24h, 25ºC
O
Entry
Catalyst
1
Yield (%)
ee (%)
dr (%)
85
90
3:1
N
N BF
4
N Ph
N
N
N
80
90
15:1
N
N
N
94
92
30:1
Bn
2
Base
O
KHMDS
Bn
3
Bn
J.R. de Alaniz, T. Rovis, submitted
CF3
52
Contiguous Stereocenters via
Asymmetric Stetter Reaction
O
CO2Et
Bn
N
N N pCF Ph
3
O
20 mol%
H
CO2Et
Bn
Bn
PhMe, 24h, 25ºC
O
O
O
O
Bn
N
N N pCF Ph
3
O
80% yield
89% ee, 20:1 dr
O
20 mol%
PhMe, 24h, 25ºC
O
O
Bn
O
O
J.R. de Alaniz, T. Rovis, submitted
N
N N pCF Ph
3
20 mol%
PhMe, 24h, 25ºC
H
O
H
O
O
95% yield
90% ee, 10:1 dr
O
H
O
H
O
94% yield
99% ee, 50:1 dr
53
Conclusion
O
H2N
N
N
CH3
N
N Ph
O
N
H3C
Enders
Ar
N
Johnson
S
HO
Breslow
O
Ar
Ar
OH
OH
H
SiR3
O
Stetter
HO2C
O
H
Trost
Bn
O
R'
Ph
R
N
CO2Et
R
O
N
N Ar
H
O
N
O
N
N
N
O
N
N Ar
D H
O
H
Rovis
OEt
O
54
Acknowledgements
Prof. Keith Fagnou
Prof. Tom Rovis
Fagnou Research Group
... And you!!
Mathieu Parisien
Marc Lafrance
Mélissa Leblanc
Valérie Charbonneau
Irina Dessinova
Julien Dugal-Tessier
Praew Thansandote
Nicole Blaquiere
55