Process Integration - CPI Research Consortium Web Site

Download Report

Transcript Process Integration - CPI Research Consortium Web Site

Heat Integration
A short description
with illustration case study
Department of Process Integration, UMIST
Manchester, UK
UMIST ©
DPI 2004
Heat Integration
Grassroot
HEN
Retrofit Analysis
H1
100C
50C
HE
HE
60C
40C
C1
UMIST ©
DPI 2004
Process Integration
• Developed and pioneered at DPI UMIST
• Gradually being established in industrial
applications needs to penetrate into municipal etc
• DPI UMIST has a consortium of 26 world leading
partners in the field
• It is supported by research SW
• Latest research in combined Water & Energy
savings
UMIST ©
DPI 2004
Heat Integration
• Typical energy saving 15 – 45 %
• Very general – easily applicable in Power
generation, Oil refining, Petrochemicals, Food
and Drink Industry, Pulp & Paper, hospitals etc
• Typical pay-back periods from a few weeks to
16 months (decision made by the client)
• Considerably contributes to Emissions
Reduction including CO2
UMIST ©
DPI 2004
Some PI Consortium Members
• BP
• Degussa
• Mitsubishi
• Air Products
• Saudi Aramco • Exon Mobil
• AspenTech
• Sinopec
• Norsk Hydro
• Shell
• IFP
• Eng of India
• CANMET
• TotalFinaElf
• JGC Corp
• UOP
• MW Kellogg
• BOC
UMIST ©
DPI 2004
Demonstration Example
• Most present applications are
not grass-route but retrofits
• Considerably more difficult constrained
problem
• Economy dictates the energy saving
potential by pay-back period
UMIST ©
DPI 2004
Retrofit of HEN
• Crude Distillation Unit
• Part of a Romanian refinery complex
• Designed some years ago by a well known
contractor
• Improvement of efficiency and energy
consumption & economic savings
UMIST ©
DPI 2004
Introduction
Objectives
EXISTING PROCESS
EXISTING PROCESS
SIMULATION
Process
Integration
Analysis
DATA COLLECTION
PINCH ANALYSIS
RETROFIT ANALYSIS
Conclusions
Acknowledgements
SUGGESTED DESIGNS
UMIST ©
DPI 2004
Vapour
Vapour
LPG (C2 - C5)
Naphta
Crude
Oil
Preheat Train
Naphtha
Stabiliser
Light Naphtha
Denaphtha
Tower
Vapour
Denaphtha Oil
Medium Naphtha
Kerosene
Diesel
Steam
LAGO
HAGO
Atmospheric
Tower
Atmospheric
Residue
Kerosene
Vapour
LVGO
HVGO
Vacuum
Tower
Vacuum
Residue
UMIST ©
DPI 2004
Introduction
Objectives
EXISTING PROCESS
SIMULATION
SIMULATION
Process
Integration
Analysis
DATA COLLECTION
PINCH ANALYSIS
RETROFIT ANALYSIS
Conclusions
Acknowledgements
SUGGESTED DESIGNS
UMIST ©
DPI 2004
• Plant measurements & HYSYS
• Peng-Robinson property package
• Main source of data
• Existing HEN
• Energy consumption
UMIST ©
DPI 2004
H1
H2
H3
H4
H5
H6
H7
H8
H9
H10
H11
H12
112.8C
92.4C
69.1C
2
107.2C
162.8C
3
60C
158.1C
4
261.4C
150C
5
6
76.8C
131.1C
7
170.8C
50C
8
217.8C
11
262.9C
315.6C
10
40C
13
12
15
90C
17
16
9
70C
14
18
90C
240.1C
21
31
22
210C
291.7C
19
H13
H14
63.6C
1
353.2C
220C
27
32
90C
24
23
90C
33
26
25
19
14
16
6
11
8
20C
4
348C
211.3C
28
162.8C
158.3C
5
370C
350C
110C
315C
29
144C
30
17
3
63.2C
C1
C2
C3
C4
C5
C6
UMIST ©
DPI 2004
H1
H2
11238.9
112.8C
63.6C
1
CW
6797.2
92.4C
CW = 38,293 kW
69.1C
2
CW
538.9
H3
H4
H5
H6
H7
162.8C
AC = 8,677 kW
20027.8
158.1C
6758.3
6630.3
5
6
261.4C
150C
15113.9
131.1C
76.8C
7
CW
1673.0
1228.6
230.1
8
9
AC
10
CW
170.8C
217.8C
3293.9
H9
H10
H11
H12
262.9C
315.6C
1652.8
452.2
16
17
2767.5
240.1C
31
11
1971.7
14
320.0
40C
13
CW
12
AC
50C
70C
AC
15
177.1
833.3
788.9
CW
21
AC
22
90C
AC
18
90C
210C
291.7C
16349.4
2959.4
19
H13
H14
60C
4
1410.5 1614.2
H8
107.2C
3
CW
23
32
13326.9
2702.2
1688.6
33
25
CW
26
AC
353.2C
1207.5
1057.5
90C
AC
24
90C
4491.7
220C
27
H
19
14
16
6
11
8
20C
4
52480.6
348C
211.3C
28
H
162.8C
158.3C
5
14875.0
370C
350C
110C
315C
29
H
1563.6
144C
H = 73,410 kW
30
H
17
3
63.2C
C1
C2
C3
C4
C5
C6
UMIST ©
DPI 2004
Introduction
Objectives
EXISTING PROCESS
SIMULATION
Process
Integration
Analysis
DATA COLLECTION
DATA COLLECTION
PINCH ANALYSIS
RETROFIT ANALYSIS
Conclusions
Acknowledgements
SUGGESTED DESIGNS
UMIST ©
DPI 2004
Name
No.
TS
(C)
TT
(C)
m
(kg/h)
C2_cond
H1
112.8
63.6
94,870
11,238
228.4
C3_cond
H2
92.4
69.1
66,510
6,797
291.7
Light_nap
H3
162.8
107.2
14,370
485
9.5
P/A naph.
H4
158.1
60.0
350,000
20,027
204.1
P/A keros
H5
261.4
150.0
180,000
13,383
120.1
C1_cond
H6
131.1
76.8
81,440
15,113
278.3
Kerosene
H7
170.8
50.0
45,000
3,111
25.7
Diesel
H8
217.8
40.0
32,000
3,333
18.7
LAGO
H9
262.9
70.0
44,000
5,247
27.2
HAGO
H10
315.6
90.0
16,000
2,277
10.1
LVGO
H11
240.1
90.0
48,000
4,371
29.1
H
(kW)
MCP
(kW/C)
UMIST ©
DPI 2004
Name
No.
TS
(C)
TT
(C)
m
(kg/h)
H
(kW)
MCP
(kW/C)
HVGO_P/A
H12
291.7
210.0
216,500
12,205
149.4
HVGO_F
H13
291.7
90.0
73,500
9,369
46.4
Vac_resid
H14
353.2
90.0
105,700
17,652
67.1
Raw crude
C1
20.0
220.0
33,370
55,555
277.8
C1_feed
C2
211.3
348.0
408,300
52,480
383.9
C3_reb
C3
158.3
162.8
94,870
6,758
1,501.8
C5_feed
C4
315.3
370.0
80,510
14,875
271.9
Steam
C5
144.0
350.0
214,500
1,563
7.6
C3_feed
C6
63.2
110.0
13,138
991
21.2
SG_1&2
C7
98.0
144.1
8,739
5,726
124.2
SG_3
C8
98.0
195.9
106,900
13,326
136.1
UMIST ©
DPI 2004
Exchanger
Data
Exchanger No.
Name
Area (m2)
1
C2 condenser
1,029.5
2
C3 condenser
720
3
SE-4
412
4
SE-8
658
5
C3 reboiler
760
6
SE-13
620
7
C1 condenser
1,454.5
8
SE-9
329
9
AE-3
78.4
10
SE-10
200
.
.
.
.
.
.
.
.
.
UMIST ©
DPI 2004
Economic Data
HE :
HEC($) = K1 + K2 AK3
T < 200C (CS) : HEC($) = 33,641 + 819 A0.78
T > 200C (SS) : HEC($) = 33,641 + 1,795 A0.78
Utilities
1996 data
Nelson-Farrar
Cost Index
Cooling water: 9.23 $/kW y
Cooling air: 8.31 $/kW y
Fuel gas: 57.4 $/kW y
UMIST ©
DPI 2004
Introduction
Objectives
EXISTING PROCESS
SIMULATION
Process
Integration
Analysis
DATA COLLECTION
PINCH ANALYSIS
PINCH ANALYSIS
RETROFIT ANALYSIS
Conclusions
Acknowledgements
SUGGESTED DESIGNS
UMIST ©
DPI 2004
Optimum TMIN
Total Cost
Capital Cost
Operating Cost
UMIST ©
DPI 2004
6.78E+06
Total Cost
6.76E+06
6.74E+06
($/y)
6.72E+06
6.70E+06
6.68E+06
Optimum  tmin
6.66E+06
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Tmin(C)
UMIST ©
DPI 2004
Composite Curves
QH,MIN = 55,553 kW
400.0
350.0
300.0
T( C)
250.0
200.0
150.0
100.0
50.0
0.0
4 10 4
QC,MIN = 29,881 kW
8 10 4
1.2 10 5
1.6 10 5
Enthalpy [kW]
UMIST ©
DPI 2004
 Introduction
 Objectives
EXISTING PROCESS
SIMULATION
Process
Integration
Analysis
Conclusions
Acknowledgements
DATA COLLECTION
PINCH ANALYSIS
RETROFIT ANALYSIS
RETROFIT ANALYSIS
SUGGESTED DESIGNS
UMIST ©
DPI 2004
Network Pinch Method
• Pinching matches  bottleneck
• How to overcome pinching matches?
UMIST ©
DPI 2004
Network Pinch Method
Existing HEN
DIAGNOSIS STAGE
New Modifications
OPTIMISATION STAGE
Energy - Capital Cost Trade-off
Suggested Design
UMIST ©
DPI 2004
EXISTING
HEN
(1)
(7)
1st REPIPING
1st RESEQUENCE
HE8: H7  H14
HE4, stream C1
(2)
(8)
2nd REPIPING
2nd RESEQUENCE
HE8: C1  C2
HE16, stream C1
(3)
(4)
(9)
(12)
3th REPIPING
1st NEW HE
1st NEW HE
1st NEW HE
HE16: H10  H11
HE34: H13 - C1
HE34: H14 – C2
HE34: H14 – C2
y
(5)
(10)
(13)
2nd NEW HE
2nd NEW HE
2nd NEW HE
HE35: H5 - C2
HE35: H12 – C2
HE35: H12 – C2
(6)
(11)
(14)
3th NEW HE
3th NEW HE
3th NEW HE
HE36: H7 - C1
HE36: H11 - C1
HE36: H4 - C1
UMIST ©
DPI 2004
Introduction
Objectives
EXISTING PROCESS
SIMULATION
Process
Integration
Analysis
DATA COLLECTION
PINCH ANALYSIS
RETROFIT ANALYSIS
Conclusions
Acknowledgements
SUGGESTED DESIGNS
SUGGESTED DESIGNS
UMIST ©
DPI 2004
EXISTING
HEN
(7)
1st RESEQUENCE
HE4, stream C1
UMIST ©
DPI 2004
H1
H2
H3
H4
H5
H6
H7
H8
H9
H10
H11
H12
112.8C
63.6C
1
92.4C
69.1C
2
107.2C
162.8C
3
158.1C
60C
4
4
150C
261.4C
5
6
76.8C
131.1C
7
170.8C
217.8C
240.1C
12
13
70C
15
14
315.6C
17
16
10
40C
11
262.9C
50C
9
8
90C
18
22
21
31
210C
291.7C
19
H13
H14
32
23
24
353.2C
220C
348C
162.8C
110C
25
33
27
19
16
14
6
4
11
8
90C
90C
26
20C
4
211.3C
28
158.3C
5
370C
350C
90C
315C
29
144C
30
17
3
63.2C
C1
C2
C3
C4
C5
C6
UMIST ©
DPI 2004
EXISTING
HEN
(7)
1st RESEQUENCE
HE4, stream C1
OPTION I
In need of further study
Payback Time  1 months
Savings = 114,190 $/y
(9)
1st NEW HE
HE34: H14 – C2
UMIST ©
DPI 2004
H1
H2
H3
H4
H5
H6
H7
H8
H9
H10
H11
H12
112.8C
63.6C
1
92.4C
69.1C
2
107.2C
162.8C
3
158.1C
60C
4
150C
261.4C
5
6
76.8C
131.1C
7
170.8C
217.8C
11
262.9C
240.1C
40C
12
13
70C
17
16
10
15
14
315.6C
50C
9
8
90C
18
22
21
31
210C
291.7C
19
H13
H14
32
353.2C
220C
348C
162.8C
34
19
16
14
6
110C
24
25
4
11
90C
90C
26
20C
8
211.3C
34
158.3C
5
370C
350C
23
33
27
28
90C
315C
29
144C
30
17
3
63.2C
C1
C2
C3
C4
C5
C6
UMIST ©
DPI 2004
EXISTING
HEN
(7)
1st RESEQUENCE
HE4, stream C1
(9)
1st NEW HE
HE34: H14 – C2
OPTION I
In need of further study
Payback Time  1 months
Savings = 114,190 $/y
OPTION II
Capital Investment = 133,983 $
Payback Time = 4 months
Savings = 320,610 $/y
(10)
2nd NEW HE
HE35: H12 – C2
UMIST ©
DPI 2004
H1
H2
H3
H4
H5
H6
H7
H8
H9
H10
H11
H12
112.8C
63.6C
1
92.4C
69.1C
2
107.2C
162.8C
3
158.1C
150C
261.4C
5
6
76.8C
131.1C
7
170.8C
217.8C
11
262.9C
240.1C
40C
12
13
70C
17
16
10
15
14
315.6C
50C
9
8
90C
18
22
21
31
19
35
32
353.2C
220C
348C
162.8C
34
19
34
16
14
6
110C
24
25
4
11
90C
90C
26
20C
8
211.3C
35
158.3C
5
370C
350C
23
33
27
28
90C
210C
291.7C
H13
H14
60C
4
315C
29
144C
30
17
3
63.2C
C1
C2
C3
C4
C5
C6
UMIST ©
DPI 2004
EXISTING
HEN
(7)
1st RESEQUENCE
HE4, stream C1
(9)
1st NEW HE
HE34: H14 – C2
(10)
2nd NEW HE
HE35: H12 – C2
OPTION I
In need of further study
Payback Time  1 months
Savings = 114,190 $/y
OPTION II
Capital Investment = 133,983 $
Payback Time = 4 months
Savings = 320,610 $/y
OPTION III
Capital Investment = 648,803 $
Payback Time = 10 months
Savings = 495,440 $/y
(11)
3th NEW HE
HE36: H11 - C1
UMIST ©
DPI 2004
H1
H2
H3
H4
H5
H6
H7
H8
H9
H10
H11
H12
112.8C
63.6C
1
92.4C
69.1C
2
107.2C
162.8C
3
158.1C
150C
261.4C
5
6
76.8C
131.1C
7
170.8C
217.8C
11
262.9C
240.1C
40C
12
13
70C
17
16
10
15
14
315.6C
50C
9
8
90C
18
36
31
22
21
19
35
32
353.2C
220C
348C
162.8C
34
19
34
16
14
6
110C
24
25
4
36
11
90C
90C
26
20C
8
211.3C
35
158.3C
5
370C
350C
23
33
27
28
90C
210C
291.7C
H13
H14
60C
4
315C
29
144C
30
17
3
63.2C
C1
C2
C3
C4
C5
C6
UMIST ©
DPI 2004
EXISTING
HEN
(7)
1st RESEQUENCE
HE4, stream C1
(9)
1st NEW HE
HE34: H14 – C2
(10)
2nd NEW HE
HE35: H12 – C2
(11)
3th NEW HE
HE36: H11 - C1
OPTION I
In need of further study
Payback Time  1 months
Savings = 114,190 $/y
OPTION II
Capital Investment = 133,983 $
Payback Time = 4 months
Savings = 320,610 $/y
OPTION III
Capital Investment = 648,803 $
Payback Time = 10 months
Savings = 495,440 $/y
OPTION IV
Capital Investment = 829,367 $
Payback Time = 11 months
Savings = 586,190 $/y
UMIST ©
DPI 2004
Option V
Utility Cost Saving ($/y)
600,000
550,000
Option IV
500,000
450,000
400,000
350,000
Option III
Option II
300,000
250,000
200,000
150,000
100,000
Option I
2
4
6
8
10
12
14
16
18
Payback Time (months)
UMIST ©
DPI 2004
H1
H2
H3
H4
H5
H6
H7
H8
H9
H10
H11
H12
112.8C
63.6C
1
92.4C
69.1C
2
107.2C
162.8C
3
158.1C
150C
261.4C
5
6
76.8C
131.1C
7
170.8C
217.8C
11
262.9C
240.1C
40C
12
13
70C
17
16
10
15
14
315.6C
50C
9
8
90C
18
36
31
22
21
19
35
32
353.2C
220C
348C
162.8C
34
19
34
16
14
6
110C
24
25
4
36
11
90C
90C
26
20C
8
211.3C
35
158.3C
5
370C
350C
23
33
27
28
90C
210C
291.7C
H13
H14
60C
4
315C
29
144C
30
17
3
63.2C
C1
C2
C3
C4
C5
C6
UMIST ©
DPI 2004
OPTION IV - SUGGESTED DESIGN
• 1 Re-sequence + 3 New HE
• Utility savings
• Hot utility = 12+%
• Cold utility = 19+%
• Emissions reduction (9 MW)
• Capital Investment = 830,000 US$
• Payback Time < 10 months
UMIST ©
DPI 2004
EXISTING PROCESS
EXISTING PROCESS
SIMULATION
SIMULATION
DATA COLLECTION
DATA COLLECTION
PINCH ANALYSIS
PINCH ANALYSIS
RETROFIT ANALYSIS
RETROFIT ANALYSIS
SUGGESTED DESIGNS
SUGGESTED DESIGNS
•Network Pinch Method
•Diagnosis Stage
•Optimisation Stage
•Different Options (4)
•Suggested Topology
•1 Re-sequencing. + 3 New HE
•Savings
•Hot utility = 12+%
•Cold utility = 19+%
•Emissions reduction (9 MW)
•Payback Time 10 months
UMIST ©
DPI 2004
www.dcs.vein.hu/pres2004
UMIST ©
DPI 2004