Population PK/PD and the rational design of an
Download
Report
Transcript Population PK/PD and the rational design of an
NATIONAL
VETERINARY
SCHOOL
UMR 181 Physiopathologie &
Toxicologie Expérimentales
TOULOUSE
Population PK/PD and the rational
design of an antimicrobial dosage
regimen in veterinary medicine
Pierre-Louis Toutain
AAVM Congress - Ottawa June 2004
7/16/2015
Ottawa Juin 2004 - 1
Co-workers
• Academia
– Horse study
•
•
•
•
A. Bousquet-Mélou
M. Doucet
D. Concordet
M. Peyrou
– Pig study
•
•
•
•
•
•
J. del Castillo
V. Laroute
D. Concordet
P. Sanders
M. Laurentie
H. Morvan
• Industry
– Horse study
• Vetoquinol (France)
• M. Schneider
– Pig study
•
•
•
•
•
•
•
SOGEVAL (France)
C. Zemirline
P. Pomie
VIRBAC (France)
E. Bousquet
INTERVET (germany)
E Thomas
Ottawa Juin 2004 - 2
"The design of appropriate dosage
regimens may be the single most
important contribution of clinical
pharmacology to the resistance problem"
Schentag et al. Annals of Pharmacotherapy, 30:
1029-1031
Ottawa Juin 2004 - 3
Dosage regimen and prevention of
resistance
• Many factors can contribute to the development
of bacteria resistance
• the most important risk factor is repeated
exposure to suboptimal antibiotic concentrations
dosage regimen should minimize the likelihood of
exposing pathogens to sublethal drug levels
Ottawa Juin 2004 - 4
Ranking (Low, Medium, High) of extent of
antibiotic drug use in animal based on duration
and method of administration
Duration
Short <6 days
Medium 6-21 d
Long >21 days
Individual
animal
Groups or pens
of animal
Flocks, herds
of animals
L
L
M
M
M
H
H
H
H
Ottawa Juin 2004 - 5
What is the contribution of the kineticist to the
prudent use of antibiotics
To assist the clinicians designing an optimal
dosage regimen
• To ensure that the selected antibiotic reach the
site of infection at an appropriate effective
concentration, for an adequate duration and for
all (or most) animals under treatment to
guarantee a cure (clinical, bacteriological) and
without favoring antibioresistance
Ottawa Juin 2004 - 6
The application of population
pharmacokinetic modelling to
optimize antibiotic therapy
Ottawa Juin 2004 - 7
How to ensure that a dosage
regimen minimizes the likelihood of
exposing pathogens to sub-clinical
drug levels
• Individual animals
• groups or pens vs flocks/herds
population approach
Ottawa Juin 2004 - 8
Reminder
• Traditional vs populational PK/PD
approaches
• What is PK/PD for antibiotics and how to
determine a dosage regimen using PK/PD
predictors
– see P. Lees presentation
Ottawa Juin 2004 - 9
Traditional veterinary PK
• Study performed in experimental setting
– elaborate design
– limited number of animals
– rich data
• Data analysis: two stages
1- modelling individuals samples of individual estimates
• Cl, Vss, F%, t1/2
2- statistical analysis
• mean - SD
• search for difference between subgroups (ANOVA), for
associations (regression…)
Ottawa Juin 2004 - 10
Limits of traditional PK
• Experimental conditions
– may be not representative of the real world
– consider variability as a nuisance
• Data analysis
– variance and covariance often badly
estimated and explained
• Solution: the population approach
Ottawa Juin 2004 - 11
How to determine a
dosage regimen using
PK/PD predictors
Ottawa Juin 2004 - 12
Dose titration
Dose
Response
Black box
PK/PD
PK
PD
Response
Dose
Plasma
concentration
Ottawa Juin 2004 - 13
The main goal of a PK/PD trial in
veterinary pharmacology
To be an alternative to dose-titration
studies to discover an optimal
dosage regimen (will be presented
by P. Lees)
Ottawa Juin 2004 - 14
Contributions of the PK/PD
approach to the population
determination of a dosage regimen
The separation of PK and PD variabilities
Ottawa Juin 2004 - 15
PK/PD variabilities for antibiotics
• Consequence for dosage determination
PK
Dose
BODY
PD
Plasma
concentration
Physiological/constitutional
variables
•Breed, sex, age
•Kidney function
•Liver function...
Pathogens
Effect
Clinical covariables
• pathogens susceptibility (MIC)
• disease severity or duration
PK/PD population approach
Ottawa Juin 2004 - 16
PK/PD predictors of efficacy
• T>MIC : penicillins, cephalosporins, macrolides, oxazolidinones
• Cmax/MIC : aminoglycosides
• AUIC (or 24h AUC/MIC) : quinolones, tetracyclines,
ketolides, azithromycins, streptogramins
Cmax
Concentrations
Cmax/MIC
AUC
AUIC =
MIC
Units = Time (h)
MIC
T>CMI
24h
Time
Ottawa Juin 2004 - 17
AUIC: an attempt to combine PK and
PD properties of antibiotics
Capacity to eliminate
the drug
PK
AUC
AUIC #
MIC
Dose / Clearance
=
= critical breakpoint value
MIC90 or MIC50
• Fixed endpoint related to Emax and EC50
PD
Application : fluoroquinolones
Ottawa Juin 2004 - 18
Computation of dose using a
PK/PD predictor
PD
Breakpoint to
be achieved
– Dose =
(24h)
AUIC
x
24h
MIC
x Clearance
fu x F%
bioavailability
Free fraction
PK
Ottawa Juin 2004 - 19
Computation of dose using a
PK/PD predictor
PD
Breakpoint to
be achieved
– Dose =
AUIC
average
(pop)
24h
MIC50 : average
MIC90
PK (average)
x
MIC
x Clearance
F%
PK (average)
Ottawa Juin 2004 - 20
Dispersion of variance around the
mean may be the most relevant
parameter to predict a population
dosage regimen for antibiotics
Ottawa Juin 2004 - 21
Variability and the likelihood of resistance
Ingested dose
Selection of resistance
Experimental setting
MIC gut flora
Field conditions
oral
Dose
gut flora
1-F%
Resistance: zoonotic, commensal
F%
Target biophase
Resistance:
pathogens of interest
Side effects
Therapeutic
window
Undesirable
concentration
MIC90
Suboptimal exposure
resistance
Ottawa Juin 2004 - 22
Variability and the likelihood of resistance
Ingested dose
Selection of resistance
Experimental setting
MIC gut flora
Field conditions
oral
Dose
gut flora
Resistance: zoonotic, commensal
F%
Target biophase
Resistance:
pathogens of interest
Side effects
Therapeutic
window
Undesirable
concentration
MIC90
Suboptimal exposure
resistance
Ottawa Juin 2004 - 23
Examples of population approaches
for antibiotics in veterinary medicine
• Identification and explanation of PK
variability
– marbofloxacin in horse
• Determining drug PK characteristics in
tissues using sparse sampling
– marbofoxacin in ocular fluid in dog
• Dosage regimen determining
– doxycyclin in pig
Ottawa Juin 2004 - 24
Marbofloxacin in horses
A. Bousquet-Mélou et al.
Ottawa Juin 2004 - 25
Marbofloxacin in horses: PK
• A fluoroquinolone
• No marketing authorization in horses
• Conventional PK study
– data analysis using the two-stage approach
– clearance = 4.15 ± 0.75 mL/kg/min CV = 18%
– Vss = 1.48 ± 0.3 L/kg
– t1/2 = 7.56 ± 1.99 h
Ottawa Juin 2004 - 26
Marbofloxacin in horses: PK/PD
integration (oral route)
• Value of efficacy index (AUIC24h) and Cmax/MIC
calculated from PK parameters obtained after the
administration of 2 mg/kg BW in 6 horses
– MIC90 = 0.027 µg/mL (enterobacteriaceae)
AUIC24h = 155 ± 21
Cmax/MIC = 31 ± 4.5
“average” PK/PD index
Ottawa Juin 2004 - 27
Population PK approach for
marbofloxacin in horses: objective
To measure the interindividual variability of
systemic exposure to marbofloxacin in horses
To identify covariates explaining a part of this
variability
Body clearance
The only determinant of AUC
Ottawa Juin 2004 - 28
Materials and Methods (1)
Animals
patients from the Equine Clinic of the Veterinary School
healthy horses from the Riding School
Covariates record
demographic, physiological, disease
not all covariates presented
IV administration of marbofloxacin (2 mg.kg-1)
Nonlinear mixed-effects modelling
Kinepop software (D. Concordet)
Ottawa Juin 2004 - 29
Materials and Methods (2)
Sampling design selection
• Number of samples per animal and selection of sampling times
D - optimal design to maximize the precision of AUC [0-24h]
• previous informations :
AUC[0-24h] Mean and Standard Deviation
Bousquet-Melou et al., Equine Vet J, 34, 2002
AUC imprecision
4 samples
Sampling windows:
30min windows centred around
1.5, 3, 5, 7 and 19.5 h
post-administration
5 samples
Sampling design
Ottawa Juin 2004 - 30
Materials and Methods (3)
• PK model : - biexponential equation
- parameterisation in volumes of distribution and clearances
• Statistical model : - lognormal distribution of PK parameters
Model 1 : no covariate
N0, ω
N0, ω
N0, ω
Log VC,i μ Vc ηVc, i
ηVC N 0, ω2 Vc
Log Vp,i μ Vp ηVp, i
ηVp
Log Cl i μ Cl ηCl,i
ηCl
Log Cl d,i μ Cld ηCld ,i
ηCld
2
2
Vp
Cl
2
Cld
Model 2 : with covariates for body clearance
Log Cli μ Cl θ1 Age i θ 2 Weight i Sex i Disease i ηCl,i
Ottawa Juin 2004 - 31
Results: conventional vs pop
kinetics
Marbofloxacin (mg/mL)
• 52 horses, 253 blood samples
10
1
0.1
0.01
0.001
0
4
8
12 16
Time (h)
20
24
Bousquet-Melou et al., Equine Vet J, 34, 2002
Ottawa Juin 2004 - 32
Variability: model without covariable
2.5
population mean = 3.88 mL/kg/min
2
(mg/mL)
predicted concentrations
Clearance (pop)
Inter-individual variability
CV(%) = 50 %
1.5
1
0.5
0
0
0.5
1
1.5
2
2.5
observed concentrations
(mg/mL)
Ottawa Juin 2004 - 33
Variability: model with covariables
(mg/mL)
predicted concentrations
Without covariable
With covariables
2.5
2.5
2
2
1.5
1.5
1
1
0.5
0.5
0
0
0
0.5
1
1.5
2
2.5
0
0.5
1
1.5
2
2.5
observed concentrations
(mg/mL)
Ottawa Juin 2004 - 34
Variability: explicative covariable
Covariables for body clearance expressed in L.kg-1.h-1
Age
NS
Disease
NS
Sex
NS
Weight
P=0.001
R2 = 0.33
The body weight explains about 33%
of marbofloxacin clearance variability
Note: dose was 2 mg/kg BW i.e. already scaled to BW
Ottawa Juin 2004 - 35
Marbofloxacin: the body weight is a
covariable
Body weight (kg)
200
400
600
0
-1
-2
-3
Clearance (L/kg/h)
Ln (Clearance)
0
0.6
0.4
0.2
0
0
Allometric relationship with
an allometric exponent >1
200
400
600
Body weight (kg)
Ottawa Juin 2004 - 36
Discussion
• Marbofloxacin clearance in horses
Population trial
Mean (L.kg-1.h-1)
CV (%)
Classical trials *
0.233
0.19 - 0.246
50
18 - 21
* Carretero et al., Equine Vet J, 34, 2002
Bousquet-Melou et al., Equine Vet J, 34, 2002
• Influence of body weight
In the range of observed weights : about 3-fold variation in body
clearance expressed per kilogram
Ottawa Juin 2004 - 37
Conclusion
High interindividual variability of marbofloxacin body
clearance in horses
Underestimated in classical PK trials
Influence of body weight
Consequences on systemic exposure
Clinical relevance for efficacy and resistance ?
Current trial
Multicentric experiment (Montreal, Toulouse, Utrecht, Vienna)
Increased number of covariates
Further trials
Assessment of variability of PD origin
Ottawa Juin 2004 - 38
Population PK/PD
determination of a dosage
regimen for an antiobiotic
Ottawa Juin 2004 - 39
Objectives
• Document, with population PK/PD
approach, the dosage regimen for
antibiotics in pig
• Ultimate goal : make recommendations
– to determine a dosage regimen
– to establish MIC breakpoints
– to establish PK/PD predictor breakpoints
Ottawa Juin 2004 - 40
Population trial
(INRA/SOGEVAL/CTPA)
J. del Castillo et al.
•
•
•
•
•
Antibiotic: doxycyclin
Britain (2 settings)
215 pigs (30 to 110 kg BW)
oral (soup)
pens of 12-15 pigs (unit of treatment)
Ottawa Juin 2004 - 41
Population trial
• Decision of treatment : metaphylaxis
• prevalence of disease>10% (tachypnee, body
temperature > 40°C)
• Treatments :
– Doxycyclin (5 mg/kg) or
– Doxycyclin + paracetamol (15 mg/kg)
• 2 meals apart from 24h
• Measure of covariables (rectal temperature /clinical
signs etc.)
• Blood samplings (4 or 5 after the 2nd dose)
• Dosage HPLC (doxy, paracetamol+metabolite)Ottawa Juin 2004 - 42
PK Variability
1.6
Doxycycline
Concentrations mg/mL
1.4
n = 215
1.2
1
0.8
0.6
0.4
0.2
0
-5
0
5
10
15
20
25
30
Time (h)
Ottawa Juin 2004 - 43
PK doxycyclin variability analysis
Ottawa Juin 2004 - 44
Doxycycline : sex effect
Doxycycline
Sexe 0
Sexe 1
Time (h)
Ottawa Juin 2004 - 45
Doxycycline
Doxycycline : body temperature effect
Rectal temperature
Ottawa Juin 2004 - 46
Concentrations (µg/mL)
Doxycycline : disease effect
healthy
diseased
Time (h)
Ottawa Juin 2004 - 47
Variability analysis: AUC vs. body weight
Distribution of AUC [0, 24 h] with weight
AUC (mg h mL-1)
20
15
10
5
0
20
40
60
80
100
120
BW (kg)
Ottawa Juin 2004 - 48
How to make use of PK/PD
population knowledge to predict
how well will doxycyclin perform
clinically?
Ottawa Juin 2004 - 49
The use of MonteCarlo simulation
• Dose selection at the population level
• Determination of breakpoints:
– PK/PD
– MIC
Ottawa Juin 2004 - 50
Material and Method
• PK/PD analysis was performed using Monte
Carlo simulations
• The method accounts for the variability in
PK as well as MIC data to determine the
probability of reaching a target AUC0-24/MIC
ratio
Ottawa Juin 2004 - 51
Data analysis
• PK : non linear mixed effect model
– seek to explain the variability by covariables
– Computation of AUC and statistical
establishment of distribution
• PK/PD: MonteCarlo approach to assess
the distribution of the PK/PD endpoint
Ottawa Juin 2004 - 52
Dosage regimen: application of
PK/PD concepts
The 2 sources of variability : PK and PD
PK: exposure
PD: MIC
AUC [0, 24 h] Distribution
MIC Distribution (simulation)
16
30
25
12
% de germes
Fréquences (%)
14
10
8
6
20
15
10
4
5
2
0
0
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20
AUC (µg.h.mL-1)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Distribution of PK/PD surrogates (AUC/MIC)
Monte-Carlo approach
1
1.1 1.2 1.3
CMI (µg/mL)
Ottawa Juin 2004 - 53
AUC distribution
AUC [0, 24 h] Distribution
16
Frequences (%)
14
12
10
8
6
4
2
0
3
4
5
6
7
8
Under-exposure ?
9 10 11 12 13 14 15 16 17 18 19 20
AUC (mg.h.mL-1)
Ottawa Juin 2004 - 54
Microbiological data
Intervet, Virbac, AFSSA
•
•
•
•
Streptococcus suis (n=180)
Actinobacillus pleuropneumoniae (n=110)
Pasteurella multocida (n=206)
Haemophilus (n=25)
Ottawa Juin 2004 - 55
MIC distribution:
Actinobacillus pleuropneumoniae (n=106)
35
30
INTERMEDIATE
Pathogens %
40
25
20
15
10
SUSCEPTIBLE
5
RESISTANT
0
0.25
0.5
1
2
4
8
MIC (µg/mL)
Ottawa Juin 2004 - 56
Pathogens %
MIC distribution
Pasteurella multocida (n=205)
40
35
30
25
20
15
10
5
0
SUSCEPTIBLE
0.0625 0.125 0.25
0.5
1
2
4
MIC (m g/mL)
Ottawa Juin 2004 - 57
MIC distribution
Streptococcus suis (n=180)
Bimodal distribution
30
INTERMEDIATE
Pathogens %
35
25
20
SUSCEPTIBLE
15
RESIST.
10
5
0
0.0313 0.0625 0.125
0.5
1
2
4
8
16
32
CMI ( m g/mL)
Ottawa Juin 2004 - 58
Statistical distribution of PK/PD
predictors
• Question: what is the percentage of a pig
population to achieve a given value of the
PK/PD predictor for a given dose of
doxycyclin for a:
– Empirical (initial) antibiotherapy (pathogen
known, MIC unknown but distribution known)
– Targeted antibiotherapy (MIC known)
Ottawa Juin 2004 - 59
Doctor or Regulator
• In clinical therapy, we would like to give optimal
dose to each individual patient for the particular
disease
individualized therapy (targeted antibiotherapy)
• In new drug assessment / development, we
would like to know the overall probability for a
population of an appropriate response to a
given drug and proposed regimen
population-based recommendations (empirical
antibiotherapy)
H. Sun, ISAP-FDA workshop 1999
Ottawa Juin 2004 - 60
Population PK/PD: applications
• Individualisation doctor
• Recommandation
regulator
Ottawa Juin 2004 - 61
% of pigs above the breakpoint
Doxycycline (5 mg/kg) : empirical vs targeted
antibiotherapy for Pasteurella multocida
Empirical antibiotherapy
Targeted antibiotherapy (MIC = 0.25 µg/mL)
100%
80%
60%
40%
20%
0%
0
24 48 72
bacteriostatic
96
120 144 168 192
Breakpoint to be achieved
(AUC/MIC) (h)
Ottawa Juin 2004 - 62
% of pigs above the breakpoints
Doxycycline (5 mg/kg): empirical vs targeted
antibiotherapy for Actinobacillus pleuropneumoniae
100%
Empirical (MIC unknown)
80%
Targeted (MIC = 0.5 µg/mL)
60%
40%
20%
Breakpoint to be achieved
(AUC/MIC) (h)
0%
0
24
48
72
Bacteriostatic
Ottawa Juin 2004 - 63
% of pigs above the breakpoint
Doxycycline (5 mg/kg) : empirical vs targeted
antibiotherapy for Streptococcus suis
100%
80%
Empirical antibiotherapy
Targeted antibiotherapy (MIC = 16 µg/mL)
60%
40%
20%
0%
0
24
48
bacteriostatic
72
96
120
144
168
192
Breakpoint to be achieved
(AUC/MIC) (h)
Ottawa Juin 2004 - 64
Population dose determination
• Question: what is the doxycycline dose
to be administered to achieve a given
AUC/MIC ratio for a given percentage of
the pig population ? (e.g. 90%)
Ottawa Juin 2004 - 65
% of pigs above a given AUC/MIC ratio
Doxycycline : selection of an empirical
(initial) dose for Pasteurella multocida
Doses
100%
90%
80%
5 mg/kg
60%
20 mg/kg
10 mg/kg
40%
20%
0%
0
24
48
bacteriostatic
72
96
120
144
168
AUC/MIC ratio (h)
Ottawa Juin 2004 - 66
% of pigs above a given AUC/MIC ratio
Doxycycline : selection of an empirical (initial)
dose for Actinobacillus pleuropneumoniae
Doses
100%
5mg/kg
10 mg/kg
80%
20 mg/kg
60%
40%
20%
0%
0
24
bacteriostatic
48
72
AUC/CMI ratio (h)
Ottawa Juin 2004 - 67
% of pigs above a given AUC/MIC ratio
Doxycycline : selection of an empirical
(initial) dose for Streptococcus suis
Doses
100%
5 mg/kg
80%
10 mg/kg
60%
20 mg/kg
40%
20%
0%
0
24
48
72
96
120
144
168
AUC/MIC ratio (h)
Ottawa Juin 2004 - 68
Determination of MIC
breakpoints by standard
developing organizations using
population approach
Ottawa Juin 2004 - 69
Determination of MIC breakpoints
• Current situation
– PK information is badly taken into account
population approach
Ottawa Juin 2004 - 70
Determination (or revision) of the clinical
MIC breakpoint for a given drug against a
given pathogen
• Dose fixed (marketing authorization)
• breakpoint to achieve determined:
– T>MIC >80% of the dosage interval
– or AUC/MIC = 100h
• computation of the critical MIC value for
which T>MIC (or other PK/PD indices) are in
excess of 90% (or other %) of subjects.
Ottawa Juin 2004 - 71
% of pigs above the breakpoint
Doxycycline (5 mg/kg) : MIC breakpoint for
Actinobacillus pleuropneumoniae to achieve a given
AUC/MIC ratio for 90% of pig
MIC = 0.0625 µg/mL
100%
90%
80%
MIC = 0.125 µg/mL
MIC = 0.25 µg/mL
60%
40%
20%
0%
0
24
48
bacteriostatic
72
96
120 144 168 192 216 240
Breakpoint AUC/MIC (h)
Ottawa Juin 2004 - 72
% of pigs above a given AUC/MIC ratio
Doxycycline (5 mg/kg): MIC breakpoint for
Streptococcus suis to achieve a given
AUC/MIC ratio
100%
90%
80%
MIC = 0.5µg/mL
MIC = 0.125 µg/mL
MIC = 0.0625 µg/mL
60%
40%
20%
0%
0
24
48
Bacteriostatic
72
96
120
144
168
192
Breakpoint AUC/CMI (h)
Ottawa Juin 2004 - 73
Doxycycline(5 mg/kg) : MIC breakpoints for
Pasteurella multocida to achieve a given
AUC/MIC ratio
MIC = 0.0625 µg/mL
% de pc avec une AUC/CMI> seuil
MIC = 0.125 µg/mL
MIC = 0.25 µg/mL
100%
90%
80%
60%
40%
20%
0%
0
24
48
Bacteriostatic
72
96
120
144
168
192
AUC/MIC ratio (h)
Ottawa Juin 2004 - 74
Determination of PK/PD predictor
breakpoints
• For drug dosage prediction, not only
PK/PD index that determine the effect
but also its magnitude must be
determined
• Prospective or retrospective approach
using clinical data
Ottawa Juin 2004 - 75
Conclusion
• For practitioners
to adjust the dosage regimen for a given
animal (or a given breed…)
flexible dosage regimen
• For drug companies and authorities
a general framework to propose an
empirical (initial) dosage regimen
• For standards-developing organizations
MIC breakpoints
Ottawa Juin 2004 - 76
Experimental vs population
studies
Ottawa Juin 2004 - 77
Experimental
Population
Ottawa Juin 2004 - 78
Experimental vs. population
approach
Two questions regarding
experimental approach
• What is its validity
(clinical relevance)
• What about variability
Ottawa Juin 2004 - 79
Drug administration, social behavior
and the dose
Experimental
Field
• Individually controlled by
the investigator
(restricted, tubing…)
• related to individual feeding
behavior (fever, anorexia)
• group effect (hierarchy,
dominance) or other behavior
• The nominal dose is
guaranteed to all
individuals
• Dose actually ingested can be
much higher or much lower than
the nominal dose
Ottawa Juin 2004 - 80
The pathology
Experimental
• Standardised experimental
infectious model
Field
• Spontaneous disease
Ottawa Juin 2004 - 81
Animal selection
Experimental
Population
• Highly selected (as
homogeneous as
possible) body weight,
sex, age...
• Representative of the target
population different breed, age,
pathological conditions…
Ottawa Juin 2004 - 82
Study design
Experimental
Population
Difference
• experimental,
restrictive
• Observational
• Power,
inference space
• artificial
(temperature,
light…)
• natural (e.g. field)
• interaction with
environment
behavior
Ottawa Juin 2004 - 83
Experimental vs population approach:
the status of variability
Experimental
Population
• viewed as a nuisance
that has to be
overcome
• recognized as an important
feature that should be identified,
measured and explained
(covariables)
Ottawa Juin 2004 - 84
Experimental vs population approach
Accuracy and variability
• In current experimental practices, major
determinant of drug disposition (PK) or of
drug effect (PD) can be modified, altered or
suppressed
! GLP is not synonymous to good science
Ottawa Juin 2004 - 85
Advantage of field population kinetics
over classical experimental setting
• Experimental
environment
– healthy animals selected
for homogeneity interindividual variability is
viewed as a nuisance
– conditions rigidly
standardized
– artificial conditions
• Real world / clinical setting
– patients representative of target
population
– variability (inter & intraindividual, inter-occasion) is an
important feature that should
be identified and measured
– seek for explaining variability
by identifying factors of
demographic pathophysiology
Ottawa Juin 2004 - 86
Doxycycline concentration variability:
population vs experimental trial
DOXYCYCLINE (µg/mL)
1.5
1.0
Number of data points
Trial
Population n=215
Experimental n=15 to 19
0.5
0.0
0
4
6
12
24
Time (h)
Ottawa Juin 2004 - 87
Doxycycline concentration variability:
population vs experimental trial for time 6h
post-administration
DOXYCYCLINE (µg/mL)
1.5
Number of data points
1: Population n=215
2: Experimental n=16
3: Experimental n=64
1.0
0.5
0.0
0
1
2
3
Ottawa Juin 2004 - 88