Undertaking GHG abatement analysis in the Republic of

Download Report

Transcript Undertaking GHG abatement analysis in the Republic of

WORKSHOP Combating Climate Change: National Commitments and Activities Measures for Abatement of GHG Emissions in Energy Sector

T. Bosevski, G. Kanevce, M. Todorovski N. Krstanovski, A. Causevski

22 March 2002, Skopje

Activity level [kt/year] of different sectors in 1998 Energy Industrial Processes Agriculture LUCF Waste Total CO 2 21*CH 4 9,189.06 1,973.48

995.32

0.00

27.44

0.05

696.57

1.47

0.00 1,069.95

10,211.82 3,741.52

310*N 2 O CO 2 -eq.

41.16 11,203.71

68.26

880.40

0.00

142.60

1,063.63

1,576.97

28.91

1,212.55

(%) 74.27

7.05

10.45

0.19

8.04

1,132.42 15,085.77 100.00

LUCF 0.19% Agriculture 10.45% Waste 8.04% Heat 17% Transport 10% Industrial Processes 7.05% Energy 74.27% Electricity production 73%

GHG Abatement for the Energy Sector - Electricity Production Electric power system expansion planning: WASP

– Wien Automatic System Planning (Electric power system expansion planning)

VALORAGUA

– Valorization of water - Portuguese (Simulation of a mixed hydro-thermal power system used to enhance the WASP analysis)

OPTIM

– Model developed by the study team members (Detailed simulation of a mixed hydro thermal power system used to enhance the WASP analysis)

Basic Data and Existing Plants Planning period:

2001-2030

Electricity demand:

7000 GWh, 1267 MW (year 2001)

Annual growth rates:

3.75%, 3.25% and 2.75% by decades

Simulation type:

montly basis, three hydroconditions

Electricity production (year 2000)

Name Bitola 1 Bitola 2 Bitola 3 Oslomej Negotino

TOTAL

Net cap. (MW) Energy (GWh) 207 207 1,463.7

1,489.3

207 109 198

928

1,389.1

463.7

353.2

5,159.0

Thermal GWh % 5,159 82 Hydro 1,170

TOTAL 6,329

18 100 Import Export 291 179

Demand 6,441

Name Vrben Vrutok Raven Globocica Spilje Tikves Small hydro

TOTAL

Net cap. (MW) Energy (GWh) 12.8

150 31.4

376.8

19.2

42 84 43.2

178.2

289.9

92 41

441

128.3

122.2

1,170.0

Energy Resources Solid fuels

Suvodol (66 mill. t - status 2001, 10 years) Oslomej (14 mill. t - status 2001, 12 years)

Additional reserves

Suvodol (second layer, about 20 mill. t, there is no mining project) Brod-Gneotino (surface layer, about 40 mill. t, there is no mining project)

Liquid fuels

Refinery OKTA (2.5 mill. t crude oil/year) Oil pipeline Skopje-Thessalonike

Natural gas

Gas pipeline (800 mill. m 3 /year), possible extension to 1200 mill. m 3 /year

Renewable resouces

Geothermal (80 GWh /year) Wood (average 930 000 m 3 /year , 3000 GWh)

New Plants Hydro plants under construction:

Kozjak & Matka 2

Hydro plants candidates: Extensions of the existing mines

HYD1: Galiste & Cebren HYD2: B. Most, Veles & Gradec

Reconstruction of existing thermal power plants

(during extended scheduled maintenance)

Thermal plants candidates:

CCC 180 - cogeneration combined cycle, 180 MW, 60% eff.

CC 270 - combined cycle, 270 MW, 57.6 % eff.

AP 600 - advanced nuclear plant, 600 MW, 33.4 % eff.

Electric Power System Expansion Scenarios Baseline scenario:

Business as usual

First mitigation scenario:

more efficient use of the hydropotential (conversion of classical into pump-storage hydroplants )

Second mitigation scenario:

pump-storage hydroplants and introduction of mixed fuel in the existing thermal plants Bitola and Oslomej

Revision of the second mitigation scenario:

update of the initial conditions and main assumptions (stagnation of the consumption, study period 2003-2030, annual growth rates 3.5%, 3% & 2.5% by decades, two-year delay of Kozjak & Matka 2, three-year delay of CCC 180)

Optimal Expansion Plans Year Baseline 2002 Kozjak 2003 2004 Matka 2 2005 CCC 180 2006 B. Most 2007 2008 2009 CC 270 2010 2011 2012 2013 2014 2015 CC 270 2016 2017 2018 2019 Veles, Gradec 2020 Nuclear AP600 2021 2022 2023 2024 2025 Nuclear AP600 2026 2027 2028 2029 2030 Galiste, Cebren First Kozjak Matka 2 CCC 180 B. Most

Galiste

CC 270

Cebren

Nuclear AP600 Second Kozjak Matka 2 CCC 180 B. Most

Galiste

CC 270

Cebren

CC 270 CC 270 Veles, Gradec Veles, Gradec Nuclear AP600 Nuclear AP600 Rev. second Kozjak Matka 2 B. Most CCC 180

Galiste

CC 270

Cebren

Veles Gradec CC 270 Nuclear AP600 Nuclear AP600

Electricity production by fuel types (Baseline scenario)

W (GWh) 20,000 18,000 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 1990 Hydro+Nuclear CCC, CC - Gas Negotino - Oil Oslomej - Lignite Bitola - Lignite 1995 2000 2005 2010 2015 2020 2025 2030

W (GWh) 18,000

Electricity production by fuel types (Revised second mitigation scenario)

16,000 14,000 12,000 Hydro+Nuclear CCC, CC - Gas Negotino - Oil Oslomej - Lignite + Oil Bitola - Lignite + Oil 10,000 8,000 6,000 4,000 2,000 0 1990 1995 2000 2005 2010 2015 2020 2025 2030

Lignite consumption for electricity production

8 7 6 5 (10 6 t) 11 10 9 4 3 2 1 0 1990 First mitigation scenario Baseline scenario Second mitigation scenario Revised second mitigation scenario 1995 2000 2005 2010 2015 2020 2025 2030

(10 6 t) 200

Integral lignite consumption for electricity production

180 182 mill. t Baseline scenario 160 Revised second mitigation scenario 140 129 mill. t 120 100 80 60 40 20 0 2000 2005 2010 2015 2020 2025 2030

Residual fuel oil consumption for electricity production

(10 3 t) 700 600 500 400 300 200 100 0 1990 1995 2000 First mitigation scenario Baseline scenario Second mitigation scenario Revised second mitigation scenario 2005 2010 2015 2020 2025 2030

Natural gas consumption for electricity production

(10 6 m 3 ) 1000 900 800 700 600 500 400 300 200 100 0 1990 First mitigation scenario Baseline scenario Second mitigation scenario Revised second mitigation scenario 1995 2000 2005 2010 2015 2020 2025 2030

CO 2 -eq. (kt) 12,000

Equivalent CO 2 emissions from electricity production by fuel types (Baseline scenario)

10,000 8,000 6,000 4,000 2,000 Gaseous - CO2+CH4+N2O Liquid - CO2+CH4+N2O Solid - CH4+N2O Solid - CO2 0 1990 1995 2000 2005 2010 2015 2020 2025 2030

Equivalent CO 2 emissions from electricity production by fuel types

CO 2 -eq. (kt) 12,000

(Revised second mitigation scenario)

10,000 8,000 6,000 4,000 2,000 0 1990 Gaseous - CO2+CH4+N2O Liquid - CO2+CH4+N2O Solid - CH4+N2O Solid - CO2 1995 2000 2005 2010 2015 2020 2025 2030

Specific CO 2 -equivalent emissions from electricity production

[kg/kWh] 1.6

1.4

1.2

1 0.8

0.6

0.4

0.2

0 1990 First mitigation scenario Baseline scenario Second mitigation scenario Revised second mitigation scenario 1995 2000 2005 2010 2015 2020 2025 2030

Abatement Costs Period 2001-2020 Baseline scenario First mitigation scenario Difference Abatement costs Baseline scenario Second mitigation scenario Difference Abatement costs Period 2001-2030 Baseline scenario First mitigation scenario Difference Abatement costs Baseline scenario Second mitigation scenario Difference Abatement costs Total CO 2 -eq. emissions (kt) 187,644 184,274 3,370 Total system costs (k$) 4,615,040 4,635,298 -20,258 6.01 $/t CO 2 -eq.

187,644 152,832 34,812 4,615,040 5,399,287 -784,247 22.53 $/t CO 2 -eq.

Total CO 2 -eq. emissions (kt) Total system costs (k$) 240,241 233,751 6,491 6,805,029 6,723,242 81,787 -12.60 $/t CO 2 -eq.

240,241 215,787 24,454 48.16 $/t CO 2 -eq.

6,805,029 7,982,828 1,177,799

Primary-energy sources consumption for heat production Heat Production

35 30 25 20 15 10 5 0 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 Energy Sources

Contribution of different primary-energy sources for

Geothermal

annual heat production in Macedonia in 2000

Coal LPG Geothermal 2.4% Residual Fuel Oil 46.6% Coal 4.3% LPG 6.3% Natural Gas 7.1% Gas/Diesel Oil 19.4% Wood 13.8% Natural Gas

Geo Coal LPG N Gas Wood G/D Oil RF OIL

Wood Gas/Diesel Oil Residual Fuel Oil 0 2000 4000 6000 8000 10000 12000 Heat Production [TJ/yr]

Heat Production Scenarios

All scenarios are based on the finding from the corresponding electricity production scenarios The forecasts for fuel consumption were made following the previous studies (average annual growth rate 3.7%) Natural gas was given priority taking into account the limit of 1,200 mill. m 3 per year.

It was assumed that the large heat production units will alternatively use natural gas or residual fuel oil.

Primary-energy sources consumption for heat production

80000 70000 60000 50000 40000 30000 20000 10000 0 2000

Baseline scenario

2005 2010 2015 2020 2025 2030

Geo Coal LPG N Gas Wood G/D Oil RF OIL

Natural gas consumption for electricity and heat production

1200 1000 800 600 400 200 0 2000

Baseline scenario Heat production Electricity prod.

2005 2010 2015 2020 2025 2030 1200 1000 800 600 400 200 0 2000

Revised second mitigation scenario Heat production Electricity prod.

2005 2010 2015 2020 2025 2030

Comparison of the Heat Production Scenarios

Energy sources Geothermal Coal LPG 2030 R2nd MS 2030 2nd MS 2030 MS 2030 BS 2000 Natural Gas Wood Gas/Diesel Oil Residual Fuel Oil 0 5000 10000 15000 20000 25000 30000 35000 Heat production [TJ/yr] Coal 3,0% LPG 6,3% Coal 4,3% N Gas 7,1% Wood 13,8% G/D Oil 19,4% Geo 2,4% RF Oil 46,6%

2000

N Gas 23.5% Wood 7.1% LPG 18.6% G/D Oil 11.8% Coal 2.7% Geo 1.2% RF Oil 35.1%

2030 BS

N Gas 29,0% Wood 6,3% LPG 14,1% G/D Oil 11,0% Geo 1,4% RF Oil 35,2%

2030 1st MS

N Gas 32,1% Wood 6,3% LPG 14,1% Coal 3,0% G/D Oil 11,0% Geo 1,4% RF Oil 32,1%

2030 2nd MS

N Gas 17,5% LPG 14,1% Wood 6,3% G/D Oil 11,0% Coal 3,0% Geo 1,4% RF Oil 46,7%

2030 R2nd MS

Equivalent CO 2 Emissions from Heat Production by Fuel Types

6000 5000 4000 3000 2000 1000 0 2000

Baseline scenario

2005 2010 6000 5000 4000 3000 2000 1000 0 2000

Revised second mitigation scenario

2005 2010 2015 2020 2025 2030 2015 2020 2025 2030 Coal LPG Natural Gas Wood Gas/Diesel Oil Residual Fuel Oil Coal LPG Natural Gas Wood Gas/Diesel Oil Residual Fuel Oil

Transport

[kt] 200 180 160 140 120 100 80 60 40 20 0 1993 Road-Gasoline Road-Diesel Rail-Diesel Air-Kerosene 1994 1995 1996 1997

Fuel consumption

1998 1999 2000

Baseline Scenario for the Road Transport

Optimistic Pesimistic 1200000 1000000 800000 600000 400000 200000 0 1995 2000 2005 2010 Year 2015 2020 2025 2030

70,000

Baseline Scenario for the Air Transport

Number of landings and take-offs 60,000 50,000 40,000 30,000 20,000

Skopje

10,000 0 1990

Ohrid

1995 2000 2005 2010 2015 2020 2025 2030

Mitigation Scenarios for the Transport Sector Road transport - Vehicles efficiency improvement - Reduction of vehicle-kilometers Rail transport - Completion of the electrification Air transport - Improvement of the efficiency - Improvement of ariport operation (reduction of waiting time for landing approval)

Total CO 2 Emissions for the Transport Sector

baseline optimistic mitigation optimistic baseline pesimistic mitigation pesimistic 6000 5000 4000 3000 2000 1000 0 2000 2005 2010 2015 year 2020 2025 2030

Conclusions Electricity production:

- More efficient use of the hydropotential (pump-storage hydroplants) - Introduction of liquid fuel in the existing thermal plants which yield significant reduction of CH 4 emissions - The new thermal power plants using natural gas are with high efficiency - Keeping the fossil fuels as a dominant the nuclear plant is postponed to the year 2024

Heat

- Replacement of the old heating plants on liquid fuel with a new ones on natural gas

Transport -

Promotion of cleaner and more energy efficient vehicle applying variety of tax, custom and regulatory measures - Improvement of the road infrastructure