Transcript Document

OCEN 201
Introduction to Ocean &
Coastal Engineering
Offshore Structures
Jun Zhang
[email protected]
Offshore Structures
•Drilling rigs: Exploration of oil and gas
Stay in a place for a few months (Mobil or movable)
- Jack-up drilling rig
- MODU (Mobil Offshore Drilling Unit)
• Production platforms: Production of oil and gas
Stay in a place for at least a few years (usually 20 -30 years)
- Ground-base structure ( <500~800 m)
- Floating Structures (> 800 m)
Fig. 3-2
Example of
jack-up
drilling rig
Legs are
retractable
Fig. 3-3
A semisubmersible
Drilling Rig
•Mooring
system
•or Dynamic
positioning
DP Dynamic Positioning
Fig. 3-5
Steel Jacket
Platform in 20 –
200 m waters
< 500 m
Cannot be
moved
OFFSHORE PLATFORM
Fig. 3-6
Concrete
Gravity
Structure
OFFSHORE STRUCTURES
OFFSHORE PRODUCTION &
DRILLING
• AUGER TLP
• OCEAN CLIPPER
OFFSHORE PLATFORM
• SPAR
• FIXED JACKETED
DRILLING RIG & SPAR
Articulated Tower
Fig. 3-10 pp56
New version
Fig. 12 pp61
Single Anchor Leg Mooring
System
Fig. 3-11 pp56
New Version
Fig.13 pp62
Wave Forces on Offshore Structures
• Morrison Equations
• Diffraction/Radiation Theory*
(Potential theory, neglect water viscosity)
• CFD (Computational Fluid Dynamics)*
(Navier-Stokes Equations, considering
water viscosity)
Keulegan-Carpenter Number (Non-dimensional)
describing the relation between an oscillatory flow and
a cylinder
K  U mT / D
U m     Peak (amplitude of) vlocity of the flow
T     Period
D     Diameter
K  25 Particle movement is much greater than D
5  K  25
K  5 Particle movement is smaller than D
D / L  0.2 Wavelength is much greater than D
D / L  0.2 Wavelength is not much greater or smaller
than D
Morrison Equations & Modified ME
1
dun
dFin   Cd d A un un  Cm  dV
2
dt
Cd ----- Drag Coefficient, dV ------ Volume
Cm ---- Added Mass Coefficient
d A ----- Projected area (normal to current)
Additional term due to votex induce (lateral) force
1
2
dFl   CLd A un cos(2 f  t ),
2
fD
S0 
, S0 ------- Strouhal Number
un
CL ----------- Lifting Coefficient
Wave Forces on A Vertical Cylinder
Velocity & acceleration are a function of z & t
Force (function of t)
1
dun
dFin   Cd d A un un  Cm  dV
2
dt
 2
D
d A  Dd z ,
dV  D d z , R 
4
2
0
0
1
Fin   dFin   Cd D  un und z
h
h
2
0 dun
 2
+ D Cm  
dz
 h dt
4
 (3  4)
Wave Forces on A Vertical Cylinder
Wave Forces on a Horizontal Cylinder
Velocity & acceleration are a function of t only
1
dun
dFin   Cd d A un un  Cm  dV
2
dt
 2
D
d A  Dd z ,
dV  D d z , R 
4
2
Fin  
0
h
dFin 
 2 dun 
1
 L  Cd D un un  D Cm

2
4
dt


L------ Length of the cylinder
Wave Forces on a Horizontal Cylinder
Example of Problem 3-1 pp73 (old v. pp64)
Computing the horizontal load on a vertical
cylinder
Drag coefficient of a cylinder pp 72 & 75 (old
v. pp63 & 64)
Added-Mass coefficient of a cylinder pp 72
(old v. pp64)
Wind & Current Forces
Steady & oscillatory portions
Steady current forces
1
Fin   Cd A U U Inline force
2
1
2
Fl   CL A U cos(2 f  t ), Transverse force
2
Wind Forces
1
Fin   aCd A U U , U  U  U
2
U
Steady wind velocity
U
Fluctuated velocity (wind gustiness)
Applied at the center of pressure Z P
 Zp 
U ( Z P )  U 10 

 10 
0.113 0.125
U 10 - wind velocity at 10 m above the sea
Forces on Pipeline Due to Wave & Currents
Fd  Fi  F f  w sin   0 (3.33) horizontal
Fn  Fl  w cos   0
(3.34) vertical
F f   Fn
(3.35)
  Coeff. of friction
Minimum submerged weight (remain at sea bed)
Fd  Fi   Fl
w
(3.36)
 cos   sin 
Fd  Drag force; Fi  inertia force
Fn   Normal force; Fl  lifting force
F f  Friction force; w  Submerged weight
Fi
Fl
Fd
Ff
Fn
W

Free Body diagram of A Pipe under the impact of
Wave & Currents