PowerPoint-presentatie

Download Report

Transcript PowerPoint-presentatie

CIE3109 Structural Mechanics 4 Hans Welleman

Module : Unsymmetrical and/or inhomogeneous cross section Unsymmetrical and/or inhomogeneous cross sections 1 | CIE3109

CIE3109 : Structural Mechanics 4

Lectures • 1-2 Inhomogeneous and/or unsymmetrical cross sections • Introduction • • General theory for extension and bending, beam theory Unsymmetrical cross sections • 3 • 4-5 • Example curvature and loading • Deformations Inhomogeneous cross sections • Refinement of the theory • Examples Stresses and the core of the cross section • Normal stress in unsymmetrical cross section and the core • • • Example normalstress distribution Shear stresses in unsymmetrical cross sections Shear centre 2 | CIE3109 Unsymmetrical and/or inhomogeneous cross sections

Question

What is the stress and strain distribution in a cross section due to extension and bending in case of a unsymmetrical and/or non-homogeneous cross section’ ?

concrete

y E

1

y

steel

y E

2

z

(a) unsymmetrical

E

1

z

(b) inhomogeneous (c) both Unsymmetrical and/or inhomogeneous cross sections

z

3 | CIE3109

BENDING and AXIAL LOADING

y

V y  z

F

z

F

 x  y

F

y

u

x

F

x V z

z u

y

u

z global definitions

x

sectional definitions RELATION BETWEEN EXTERNAL LOADS AND DISPLACEMENTS • • Structural level Cross sectional level Unsymmetrical and/or inhomogeneous cross sections 4 | CIE3109

ASSUMPTIONS

• FIBRE MODEL • SMALL ROTATIONS OF THE CROSS SECTION • UNIAXIAL STRESS SITUATION IN THE FIBRES • LINEAR ELASTIC MATERIAL BEHAVIOUR Hooke’s law :   fibre in cross section

x

at position

y,z

5 | CIE3109 Unsymmetrical and/or inhomogeneous cross sections

SOLUTION PATH

• • • Determine the strain distribution due to the displacements of the cross section?

Determine the stress distribution caused by these strains?

Determine the resulting forces in the cross section?

Load (

F

en

q

) Sectional forces (

N, V, M

) Equilibrium relations Static relations Stress (fibre) Strain (fibre) Deformations ( 

,

 ) Constitutive Compatibility relations relaties Kinematische relaties Displacements (

u,

 )

Constitutive relation (cross section)

Unsymmetrical and/or inhomogeneous cross sections 6 | CIE3109

KINEMATIC RELATIONS

Relation between deformations and displacements 

y z u x z-as

y

  d

u z

d

x z u z u x x-as

z y

y y y-as

z

 d

u y

d

x

Unsymmetrical and/or inhomogeneous cross sections

u y x-as

z

7 | CIE3109

FIBRE MODEL

• Horizontal displacement 

y

  d

u z

d

x

z

 d

u y

d

x

z

y y z

u

x  y

y-as z-as

 z

or

u u x x y z x-as x-as u u z y

y

z

u

x   z  y  Unsymmetrical and/or inhomogeneous cross sections 8 | CIE3109

  

RELATIVE DISPLACEMENT-STRAIN

u

x

y

z

 y

or

u

x y 

z u

z   

u x y z

x

u

x 

y u

y    y z   z with   d

u x

d

x

; 

y

  d 2

u y

d

x

2 ; 

z

  d 2

u z

d

x

2 Unsymmetrical and/or inhomogeneous cross sections 9 | CIE3109

STRAIN DISTRIBUTION

Conclusion:

Strain distribution is fully described with three deformation parameters    y

z-axis z

 z

y-axis y

strain

x-axis

 z

x-axis

strain  y Unsymmetrical and/or inhomogeneous cross sections 10 | CIE3109

STRAIN FIELD

Three parameters • strain in fibre which coincides with the x -axis • • slope of strain diagram in y direction slope of strain diagram in z -direction   y  z Unsymmetrical and/or inhomogeneous cross sections 11 | CIE3109

CURVATURE

• • • • First order tensor Curvature in x-y-plane Curvature in x-z-plane Plane of curvature

k

   y 2   z 2 tan  k   z  y

k k

Unsymmetrical and/or inhomogeneous cross sections 12 | CIE3109

NEUTRAL AXIS

k

is perpendicular to neutral axis

k neutral axis

 (

y

,

z

)   

y

  y 

z

  z  0 Unsymmetrical and/or inhomogeneous cross sections 13 | CIE3109

FROM STRAIN TO STRESS

• Constitutive relation : link between deformations and stresses          y  z Unsymmetrical and/or inhomogeneous cross sections 14 | CIE3109

STRESS AND SECTIONAL FORCES

• Static relations : link between stresses and sectional forces

N M

y 

A

  

A

y

M

z 

A

z

 Unsymmetrical and/or inhomogeneous cross sections 15 | CIE3109

Elaborate …

N M

y

M

z  

A

 (

y

,

z

)

dA

 

A E

(

y

,

z

)       

A

A y

 (

y

,

z

)

dA

z

 (

y

,

z

)

dA

 

A E

(

y

, 

A E

(

y

,

z

) 

z

)     

y

 y   

y

 y

y

 y

z

 z 

dA

 

z

 z

z

 z 

ydA

zdA N

M

y 

M

z    

A A

 

E A

E

( (

E y

(

y

, ,

z y

,

z

) )

z

)

dA ydA zdA

      y y y

A A

 

A

E E E

( ( (

y y y

, , ,

z z z

) ) )

y ydA

2

dA yzdA

      z z z 

A

A A

E E E

( ( (

y

,

y y

, ,

z z z

) ) )

zdA z yzdA

2

dA

EA

 

ES

y  

ES

z  

ES

y  y 

EI

yy  y 

EI

yz  y approach with “double-letter” symbols 

ES

z  z 

EI

yz  z 

EI

zz  z Unsymmetrical and/or inhomogeneous cross sections 16 | CIE3109

CONSTITUTIVE RELATION

on cross sectional level    

N M M

y z         

EA ES ES

y z

ES

y

EI

yy

EI

zy

ES EI

yz

EI

z zz        

κ κ ε

y z     INDEPENDENT OF THE ORIGIN OF THE COORDINATE SYSTEM SPECIAL LOCATION OF THE ORIGIN OF THE COORDINATE SYSTEM TO UNCOUPLE BENDING AND AXIAL LOADING Unsymmetrical and/or inhomogeneous cross sections 17 | CIE3109

NORMAL FORCE CENTRE

• Bending and axial loading are uncoupled:    

N M M

y z         

EA

0 0 0

EI

yy

EI

zy 0

EI

yz

EI

zz        

κ κ ε

y z     Axial loading Bending definition NC :

ES

y 

ES

z  0 if

N

= 0 then zero strain  at the NC and the

n.a.

runs through the NC Unsymmetrical and/or inhomogeneous cross sections 18 | CIE3109

LOCATION NC

y

y

y

NC

z

z

z

NC

y y

NC

z

NC

y

NC

E

(

y

,

z

)

dA ES

y

ES

z  

A

E

(

y

,

z

) 

A

E

(

y

,

z

) 

y dA

ydA

A

E

(

y

,

z

) 

z dA

A

E

(

y

,

z

) 

zdA

y

NC

A

E

(

y

,

z

)

dA z

NC

A

E

(

y

,

z

)

dA

 

ES

y

ES

z 

EA

z y

NC 

EA

z

NC

y

NC 

ES

y

EA z

NC 

ES

z

EA z

19 | CIE3109 Unsymmetrical and/or inhomogeneous cross sections

RESULT

• • Bending and axial loading are uncoupled Moment is first order tensor

M

M

y 2 

M

z 2 tan  m 

M M

y z Unsymmetrical and/or inhomogeneous cross sections 20 | CIE3109

y-axis

SUMMARY of formulas

COMPRESSION MOMENT M

n.a.

COMPRESSION TENSION 

y N.C.

k

CURVATURE 

k

n.a.

x-axis y-axis

M

y N.C.

TENSION 

m

MOMENT M M

z

z z-axis

 (

y

,

z

)  (

y

,

z

)     

y E

(

y

, 

y

 

z z

)   (

y

, 

z

)

z

   

N M M y z

        

EA EI yy EI yz EI yz EI zz

           

y z

   

m

z-axis

Unsymmetrical and/or inhomogeneous cross sections

x-axis

21 | CIE3109

PLANE OF LOADING SAME AS PLANE OF CURVATURE ?

M

   

M M y z

   

EI EI yy zy

 

EI yz EI zz

           

EI yy EI

zy

EI EI yz

zz

    0 eigenvalue problem Unsymmetrical and/or inhomogeneous cross sections 22 | CIE3109

PRINCIPAL DIRECTIONS

 

M M

y z

EI

yy 0 0

EI

zz  

EI

, yy zz  1 2 

EI yy

EI zz

1 2 (

EI yy

EI zz

)  2  2

EI yz

tan 2  ,

y z

 1 2 (

EI EI yz

yy EI zz

) Unsymmetrical and/or inhomogeneous cross sections 23 | CIE3109

ROTATE TO PRINCIPAL DIRECTIONS

z

 direction (1)

y

 direction (2)  

M M

y z

EI

yy 0 tan( 1) 2) 3)  m ) 

M

z

M

y   m m

EI

yy    k  k   

EI

zz 0   0

EI

zz  

EI EI

zz  yy  z y  

EI

zz

EI

yy

M

y

M

z tan(  k )    / 2 

EI

yy 

EI

principal direction zz   m y z   k ??

other principal direction Unsymmetrical and/or inhomogeneous cross sections 24 | CIE3109

EXAMPLE 1

Determine the position of the plane loading specified position of the neutral line which makes an angle of 30 o degrees with the homogeneous.

y m-m for the -axis. The rectangular cross section is Unsymmetrical and/or inhomogeneous cross sections 25 | CIE3109

EXAMPLE 2

A triangular cross section is loaded by pure bending only. The cross section is homogeneous and the Youngs modulus is E . The normal stress in point A and C is equal to 10 N/mm 2 .

a) Calculate the magnitude and direction of the resulting bending moment b) Compute the stress in point B Unsymmetrical and/or inhomogeneous cross sections 26 | CIE3109

F1 = HELP

I

zz

 1 36

bh

3

I

yy

 1 48

b

3

h

 1

bh

3 36

(tan

)

2

I

yz

 1 36

bh

3

tan

 Unsymmetrical and/or inhomogeneous cross sections 27 | CIE3109

Equillibrium conditions

d

N

q x

 0 d

x

d

V y

q y

 0 d

x

d

V z

d

x

q z

 0 and and  d

M y

V y

d

x

 0 d

M z

d

x

V z

 0   d

N

 

q x

d

x

d 2

M y

d

x

2  

q y

d 2

M z

d

x

2  

q z

Unsymmetrical and/or inhomogeneous cross sections 28 | CIE3109

Differential equations (structural level)

Kinematics:   d

u x

d

x

u x

' 

y

  d 2

u y

d

x

2  

u y

" 

z

  d 2

u z

d

x

2  

u z

" Constitutive relations: 

EAu

  

M M

y z

x

    "     

EA

0

EI u

0

yy EI EI

'''' yy

y

'''' zy

yz y

Equilibrium relations:  0 zz       

κ κ EI u zz ε

y z

z z

'''' ''''     d

N

 

q x

d

x

d 2

M y

d

x

2  

q y

q x

 

q q z y

d 2

M z

d

x

2  

q z

axial loading bending Unsymmetrical and/or inhomogeneous cross sections 29 | CIE3109

Result

u x

"  

q x EA Q y yy

u y y

"''

zz

EI q yy yy y y

y EI EI zz

zz

  

EI q

yz yz yz EI yz z

2

yz

2

yz EI z Q z zz

u z z

 "''  

EI q z y z EI EI

zz

 

EI q

EI

2

y

2

yz y zz EI z zz yy EI u yy EI u zz z y

"'' "'' 

Q y

Q z

modify the load in all forget-me-not’s OR solve differential equation 30 | CIE3109 Unsymmetrical and/or inhomogeneous cross sections

EXAMPLE (see lecture notes)

EI

 1 9

Ea

4   4 2 2 4  

x

 0 : (

u y

 0;

u z

 0; 

y

 0; 

z

 0)

x u u y y

"''  

u u z z

"''   

l

: (

u y

 0;

u z

 0;

M y

 0;

M z

 0)

EI q C zz

y EI EI yy

C x C x zz

2

EI

2

yz z

2  

EI q yz EI EI yy

4

zz EI

 2

q x yz

 16

z

4 3

q z Ea

4 4

EI q yy D yy

z

zz

2

EI q yz D x

 2

yz y D x

3 

EI q yy

2

EI EI yy D x zz

4

z

3

EI

 2

yz

 8

q x q z Ea Ea z

4 4 4 Unsymmetrical and/or inhomogeneous cross sections 31 | CIE3109

Result

Unsymmetrical and/or inhomogeneous cross sections 32 | CIE3109

SUMMARY displacements

Original y-z coordinate system

• • • solve differential equations Use “pseudo” load for y - and z -direction and use this load in standard engineering equations Use curvature distribution in combination with moment area theoremes to obtain displacements and rotations (see notes)

Principal 1-2 coordinate system

• Use principal directions, decompose load in (1) and (2) direction, and compute displacements in (1) and (2) direction with standard engineering equations. Finally transformate the displacements back to y - and z -direction Unsymmetrical and/or inhomogeneous cross sections 33 | CIE3109