Transcript Slide 1
Comparison of multi-standard and TMS-standard calculated NMR shifts for coniferyl alcohol Heath D. Watts, Mohamed N.A. Mohamed, James D. Kubicki 7 April 2011 Goal – Build a reasonably accurate model of lignin testable against spectroscopic data www.lbl.gov/Publications/YOS/Feb/ Experimental 13-C NMR data for coniferyl alcohol in acetone Monomer provides less convoluted spectrum, but has ambiguous shifts g b a 1 2 6 5 3 4 Me Carbon 1 2 3 4 5 6 a b g Me d13C (ppm) 130.2 109.9 148.4 147.1 115.7 120.6 130.4 128.0 63.4 56.1 http://ars.usda.gov/Services/docs.htm?docid=10491 Can computational chemistry methods reproduce the observed NMR chemical shifts for coniferyl alcohol? Energy minimization method: Structure B3LYP/6-311++G(d,p) Cheeseman et al. Journal of Chemical Physics. 1996, 104(14), 5497. NMR Theory: Chemical shielding B3LYP/6-311+G(2d,p); NMR standard: TMS Inorganic character Si 13 d C = sTMS - ssample 160 d13Ccalc (ppm) 140 1:1 line 120 MG5 (Watts, 2011) 100 B3LYP/6-311+G(2d,p) Slope: 1.01 y-intercept (ppm): 7.41 r2=0.975 Mean-unsigned error (MUE) (ppm): 8.1 Root mean-squared error (RMSE) (ppm): 9.4 ppm Max Error (ME) (ppm): 21.4 80 60 40 40 60 80 100 120 d13Cexp (ppm) 140 160 http://ars.usda.gov/Services/ docs.htm?docid=10491 Is there a conformational isomer effect? g b a 6 5 1 MG1 4 2 MG2 MG3 MG5 MG6 3 Me MG4 NMR Theory: mPW1PW91/6-31G(d); NMR standard: benzene sp2 C; CH3OH sp3 C Organic standards Multi-standard d13C = sM-S – ssample + dexp,ref Sarotti & Pellegrinet; Journal of Organic Chemistry. 2009, 74, 7254. NMR Theory: B3LYP/6-311+G(2d,p); NMR standard: TMS NMR Theory: HF/6-311+G(2d,p); NMR standard: TMS TMS, single standard d13C = sTMS - ssample Cheeseman et al. Journal of Chemical Physics. 1996, 104(14), 5497. 160 d13Ccalc (ppm) 140 120 MG3 100 mPW1PW91/6-31G(d) Slope: 1.00 y-intercept (ppm): -0.42 r2=0.994 MUE (ppm): 2.2 RMSE (ppm): 2.4 ppm Max Error (ppm): 3.7 80 60 Watts et al. Journal of Physical Chemistry B. 2011, 115(9), 1958. 40 40 60 80 100 120 d13Cexp (ppm) 140 160 NMR Theory: mPW1PW91/6-31G(d); NMR standard: benzene sp2 C; CH3OH sp3 C NMR Theory: B3LYP/6-311+G(2d,p); NMR standard: TMS NMR Theory: HF/6-311+G(2d,p); NMR standard: TMS Reviewer comments: …the authors conclude that the MG3 should be the “experimentally observable conformer”. In the case of flexible compounds, the generally accepted protocol is to calculate the Boltzmannaveraged shielding constants, which gives a more “realistic” result, because it takes into account the effect of all significantly populated conformations. In addition, the authors did not mention the relative energies of the different conformers. The Gibbs free energy of solution (G°soln) was calculated by: (Foresman, 1996; www.gaussian.com/g_whitepap/thermo.htm) G°soln = G°IEFPCM + G°TCDG G°IEFPCM total free energy in solution with all nonelectrostatic terms from the polarized continuum calculation (solvents were acetone, DMSO, & CHCl3) G°TCDG thermal correction to Gibbs free energy from the gas-phase frequency calculation The relative G°soln for each model was determined by setting the model with the lowest G°soln to 0 kJ/mol Coniferyl Relative DG°soln alcohol model (kJ/mol; acetone) MG1 MG2 MG3 MG4 MG5 MG6 10.2 0.7 4.4 10.9 0.0 4.0 Boltzmann-weighted NMR chemical shifts to account for contribution of each conformer based the energy distribution (Barone, 2002) N δ13 CX i 1 e xp( ΔG ºi /RT) δ13 CXi N º e xp( ΔG i /RT) i 1 N i 1 d13CX Boltzmann averaged chemical shift of atom X d13CXi Chemical shift of atom X in conformer i δ13CXi Ni N Probability Relative DG°soln Acetone (kJ/mol) [Ni/N] acetone MG1 MG2 Sum 10.2 0.7 4.4 1.00 0.01 0.35 0.08 Weighted shifts MG1 MG3 MG4 MG5 MG6 10.9 0.0 4.0 0.01 0.46 0.09 MG2 MG3* MG4 MG5 MG6 128.0 128.4 Carbon Experimental 1 130.2 128.0 128.7 2 109.9 111.1 120.1 106.5 107.4 126.8 114.1 115.2 3 148.4 145.2 145.9 145.4 146.4 145.1 144.7 145.5 4 147.1 145.3 150.2 145.5 145.7 149.7 144.9 144.8 5 115.7 115.0 116.7 114.4 115.3 117.6 115.2 116.2 6 120.6 121.0 127.8 125.1 124.2 121.1 118.1 117.0 a 130.4 133.4 132.9 133.4 133.4 132.9 133.4 133.5 b g OMe 128.0 63.4 56.1 125.9 65.2 53.4 126.4 125.5 125.3 126.5 126.3 126.1 65.2 65.1 65.1 65.3 65.3 65.3 57.2 53.4 53.1 57.0 53.4 53.1 127.8 128.2 128.8 Boltzmann-weighted d13Ccalc (ppm) Watts et al. Journal of Physical Chemistry B. 2011, 115(9), 1958. 160 140 120 100 Boltzmann-weighted mPW1PW91/6-31G(d) Slope: 1.00 y-intercept (ppm): 0.06 r2: 0.996 MUE (ppm): 2.1 RMSE (ppm): 2.1 Max Error (ppm): 3.2 80 60 40 40 60 80 100 120 d13Cexp (ppm) MG3 only mPW1PW91/6-31G(d) Slope: 1.00 y-intercept (ppm): -0.42 r2=0.994 MUE (ppm): 2.2 RMSE (ppm): 2.4 ppm Max Error (ppm): 3.7 140 160 Conclusion: coniferyl alcohol • For d13C NMR calculations on coniferyl alcohol – Performance of multi-standard method >> TMSstandard method • Linear correlation • Statistical errors • Multiple, Boltzmann-weighted conformers better predict chemical shifts than did comparison of a particular conformer with data Acknowledgments USDA National Needs Graduate Fellowship Competitive Grant 2007-38420-17782 from the National Institute of Food and Agriculture to H.D. Watts through Nicole Brown. Instrumentation funded by the National Science Foundation through grant OCI0821527. JDK, MNAM, and HDW acknowledge support of the U.S. Department of Energy grant for the Energy Frontier Research Center in Lignocellulose Structure and Formation (CLSF) from the Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001090. HDW acknowledges support from Shell Geosciences Energy Research Facilities Award MNAM was supported by the USDA grant “Improved Sustainable Cellulosic Materials Assembled Using Engineered Molecular Linkers” through Jeff Catchmark. Computational support was provided by the Research Computing & Cyberinfrastucture group at the Pennsylvania State University. Discussions with Ming Tien, Brett Diehl, Nicole Brown and other members of the Center for Nanocellulosics and CLSF are also acknowledged. References • Adamo, C.; Barone, V. Journal of Chemical Physics. 1998, 108(2), 664-675. • Bachrach, S.M. Quantum mechanics for organic chemistry. In Computational Organic Chemistry. Wiley-Interscience: New Jersey, 2007, pp 142. Barone, G.; Duca, D.; Silvestri, A.; Gomez-Paloma, L.; Riccio, R.; Bifulco, G. Chemistry—a European Journal. 2002, 8(14), 3240-3245. Becke, A.D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993a, 98, 1372. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993b, 98(7), 5648. Cheeseman, J.R.; Trucks, G.W.; Keith, T.A.; Frisch, M.J. Journal of Chemical Physics. 1996, 104(14), 5497-5509. Foresman, J.B.; and Frisch, Frisch, Æ. Exploring Chemistry with Electronic Structure Methods. 2nd Ed. Gaussian, Inc.: Pittsburgh, PA, 1996. Gill, P.M.W. Density functional theory (DFT), Hartree-Fock (HF), and the self-consistent field. In Encyclopedia of Computational Chemistry. von Ragué Schleyer, P.; Allinger, N.L.; Clark, T.; Gastiger, J.; Kollman, P.A.; Schaefer III, H.F.; and Schreiner, P.R., Eds. Wiley: New York., 1998, Volume 1, pp 678-689. Grunenber, J., Editor. Computational Spectroscopy. Wiley-VCH: Weinheim, 2010. Holtman, K.M.; Chang, H.; Jameel, H. J Wood Chem Tech. 2006, 26, 21-34 Koch, W.; Holthausen, M.C. A Chemist’s Guide to Density Functional Theory. Wiley-VCH: New York, 2002. Kubicki, J.D. Transition State Theory and Molecular Orbital Calculations Applied to Rates and Reaction Mechanisms in Geochemical Kinetics. In Kinetics of Rock-Water Interaction. Brantley, S.L.; Kubicki, J.D.; White, A.F., Eds. Springer: New York, 2008, pp. 39-72. Leach, A. An Introduction to Computational Quantum Mechanics. In: Molecular Modeling Principles and Applications. 2nd Ed. Prentice Hall: U.K. 2001b, pp 65-74. Lee, C.; Yang, W.; Parr, R.G Phys. Rev. B, 1988, 37, 785. Martínez, C.; Rivera, J.L.; Herrera, R.; Rico, J.L.; Flores, N.; Rutiaga, J.G.; and López, P. J. Molec. Model. 2008, 14, 77-81. Ralph, J.; Brunow, G.; Harris, P.J.; Dixon, R.A.; Schatz, P.F.; and Boerjan, W. Lignification: are Lignins Biosynthesized via simple Combinatorial Chemistry or via Proteinaceous Control and Template Replication? In Recent Advances in Polyphenol Research. Daayf, F. and Lattanzio, V., Eds. Blackwell: U.K., 2008a; Vol. 1; pp 36-66. Sarotti, A.M; Pellegrinet, S.C. Journal of Organic Chemistry. 2009, 74, 7254-7260. Szabo, A.; Ostlund, N.S. Model calculations on H2 and HeH+. In Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Publications: Mineola, NY, 1996, pp 158. Tossell, J.D. Calculating the NMR Properties of Minerals, Glasses, and Aqueous Species. In Molecular Modeling Theory: Applications in the Geosciences. Cygan, R.T. and Kubicki, J.D., Eds. Reviews in Mineralogy and Geochemistry: Washington, D.C., 2001; Volume 42; pp 437-458. Watts, H.D.; Mohamed, M.N.A.; Kubicki, J.D. Journal of Physical Chemistry B. 2011, 115(9), 1958-1970. • • • • • • • • • • • • • • • • • •