Dissociative Chemisorption Probed by STM
Download
Report
Transcript Dissociative Chemisorption Probed by STM
Connecting Small Molecule
Reaction Dynamics to Catalysis
Ian Harrison
Department of Chemistry, University of Virginia
Charlottesville, VA
Catalysis ↔ Surface Science
Surface Science Model
Real Catalyst
=
Crystalline nanoparticle catalyst
P = 10 atm (~104 Torr)
T = 1000 K
?
Single-crystal surface
P = 10-11 Torr
Ts = 20-1200 K; Tg ~300 K
Pressure, materials, and non-equilibrium gaps
Harnessing Dynamical Information
Surface Temperature, Ts [K]
556
100
CH4/Ni(100)
Ts = 475 K
23, J = 2
10-2
10-3
10-4
13, J = 2
10-5
Schmid et. al.
Juurlink et. al.
E0 = 65 kJ/mol
Thermal Pop.
Tn = 400 K
10-6
417
385
357
Nielsen et al. (3 mbar)
PC-MURT; E0 = 65kJ/mol
10-6
10-7
Ea = 59 kJ/mol
10-8
10-9
Ea = 70 kJ/mol
10-7
10-10
0
(a)
455
CH4/Ni(100)
Initial Sticking Coefficient
Initial Sticking Coefficient
10-1
500
10-5
20
40
60
80
100
Normal Translational Energy [kJ/mol]
1.8
(b)
2.0
2.2
2.4
2.6
2.8
1000/Ts [K-1]
Non-equilibrium dissociative sticking coefficients can be high.
m-TST model can harness this high S/N dynamical information.
Reactivity & Energy Flow at Surfaces
Kinetic Theory
Experiments
Master Equation - MURT
Nonequilibrium Expts
(e.g. Tg Ts)
←Nonequilibrium
& Equilibrium
PC-MURT
Equilibrium Expts
Transition State
Properties
←Equilibrium
only
canonical-TST
slow
Ab Initio
Improved Design and Engineering
of Catalytic & Nanoscale Processes
at Surfaces
←Energy Flow
fast
DFT
Functional
Development
Electronic Structure Theory
Activation Energies for Surface Reactions
A couple of multibillion-dollar-a-year surface reactions are:
Steam reforming of natural gas (methane dissociation on Ni catalysts).
Si homoepitaxy via UHV-CVD (silane dissociation on Si(100)).
CH4 on Ni
100
Activation Energy [kJ/mol]
Experimental
PC - MURT
Ea = 70 kJ/mol
E0 = 65 kJ/mol
110
90
80
70
60
50
Ni(100)
40
30
20
Ni(111)
10
{
{
Expt
Ab Initio
DFT
Activation Energy [kJ/mol]
120
SiH4 on Si(100)
80
Ab Initio
DFT
60
PC-MURT
40
Ea(1000 K) = 31 kJ/mol
20
E0 = 19 kJ/mol
Expt
Ab Initio
DFT
0
0
1985
1990
1995
2000
2005
Publication Year
Abbott et al., J. Chem. Phys. 121, 3792 (2004).
1988
1992
1996
2000
Publication Year
Kavulak et al., J. Phys. Chem. B 109, 685 (2005).
Microcanonical Unimolecular Rate Theory
AB
Molecule first interacts with only a
few local surface atoms (oscillators).
Energy of the transient “physisorbed
complex” (PC) is randomized by the
initial collision and/or rapid
intramolecular vibrational energy
redistribution (IVR).
All states at E* become equally
probable and react with common
ki(E*)s.
PCs are approximately adiabatically
isolated because thermalization is
slow compared to the picosecond
timescale for desorption at E* > E0.
PC System
AB
Reaction
Metal
Reservoir at Ts
Energy
Exchange
AB( p )
R ( E , E ')
R ( E ', E )
F (E)
kR ( E )
AB( p )
AB( g )
A( c ) B( c )
kD ( E )
PC
Energy
Desorption
A(c) + B(c)
AB(g)
E0
E*
ED
Ead
E
ER = E0 + ED
Reaction Coordinate
Physisorbed Complex – Microcanonical
Unimolecular Rate Theory (PC-MURT)
Using RRKM rate constants,
‡( E * E )
W
0,i ,
ki ( E*) i
h ( E *)
E0,i = threshold energy for i
the steady state approximation yields,
‡ ( E* E )
*)
W
k
(
E
R
0
R
S ( E *)
kR ( E*) kD ( E*) WR‡( E* E0 ) WD‡ ( E*)
A purely statistical result!
PC-MURT
Convolving the individual energy distributions gives
the overall PC energy distribution,
f ( E)
E
0
f t ( Et )
EEt
0
f v ( Ev )
EEv Et
0
f r ( Er )
f s ( E Et Ev Er ) dEr dEv dEt
The experimentally observed sticking coefficient is
calculated as,
S S ( E*) f ( E*) dE*
0
Predictions possible for any experiment
Dynamical Constraints
Typically, for smooth flat metal surfaces and alkanes
Normal translational energy scaling of S applies.
En = Et cos2J; parallel momentum is approximately conserved.
Local normal energy scaling may apply for corrugated
surfaces, e.g., SiH4/Si(100)-(2x1)
Introduces a new parameter D fixed independently by molecular
beam experiments; <En> = Et {(1-D) cos2J + 3D sin2J}.*
Certain rotational or vibrational modes may also be
spectator degrees of freedom.
*
Xia and Engstrom, J. Chem. Phys. 101, 5329 (1994)
PC-MURT Parameters
Desorption‡ → freely rotating molecule at ∞
Dissociation‡ → 3 Adjustable Parameters {E0, s, D}
E0, the threshold energy for dissociative chemisorption.
s, the number of surface oscillators that freely exchange energy
within the physisorbed complex.
D, a lumped frequency for the molecule-surface normal vibration
and the 3 frustrated rotations at the reactive transition state.
Average Relative Discrepancy
ARD
Stheory Sexpt
min Stheory , Sexpt
minimum fixes the 3 parameters
Synopsis of PC-MURT for CH4/Ni(100)
Dissociative sticking
probabilities for:
Ts = 475 K
10
23, J = 2
-3
Thermal “bulb” equilibrium
experiments.
661 K
627 K
570 K
10-5
(a)
Juurlink et. al.
E0 = 65 kJ/mol
Thermal Pop.
10-7
20
40
60
80
100
E0 = 65 kJ/mol
D = 170 cm-1 ARD = 43%
s=2
10
10
-1
10-6
0
95 110
(b)
10-5
10-5
Ea = 70 kJ/mol
10-6
Ea = 59 kJ/mol
1000/Ts [K-1]
Ts = 475 K
<Et>
90 kJ/mol
10-3
70 kJ/mol
10-4
50 kJ/mol
10-5
10-6
30 kJ/mol
10-7
10 kJ/mol
0.8 1.1 1.4 1.7 2.0 2.3 2.6
1000/Tn [K-1]
(d)
PC - MURT
Ea = 70 kJ/mol
E0 = 65 kJ/mol
100
10-7
80 100 120 140
10-2
1.2 1.6 2.0 2.4 2.8 3.2 3.6
110
10-4
60
10-9
120
10-3
40
10-8
(ii)
Nielsen et al.
(3 mbar)
20
Normal Translational Energy [kJ/mol]
10-1
10-4
10-8
(iii)
80
10-3
PC-MURT
(E0 = 65 kJ/mol)
10-2
10-10
0.5
65
Et = 53 kJ/mol, Tn = 811 K
Et = 43 kJ/mol, Tn = 570 K
Et = 24 kJ/mol, Tn = 757 K
10-2
90
80
70
60
50
Ni(100)
40
30
20
10-9
Schmid et al., J. Chem. Phys. 117, 8603 (2002)
Expts: Juurlink et al., Phys. Rev. Lett. 83, 868 (1999)
Homblad et al., J. Chem. Phys. 102, 8255 (1995)
Nielsen et al., Catal. Lett. 32, 15 (1995)
50
980 K
895 K
806 K
716 K
625 K
10-5
Normal Translational Energy [kJ/mol]
Activation Energy [kJ/mol]
Extract transition state
parameters for comparison to
electronic structure theory.
Initial Sticking Coefficient
Tn [K]
10-4
3% CH4 in He
35
(c)
0
10-3
10-6
Normal Translational Energy [kJ/mol]
(i)
10-2
10-1
Tn ~ 400 K
0
10-1
3% CD4 in He
20
Schmid et. al.
716 K
10-4
10-6
10-6
836 K
742 K
10-4
13, J = 2
931 K
897 K
805 K
10-3
534 K
10-5
Ts = 475 K
962 K
894 K
Initial Sticking Coefficient
10
10-2
Initial Sticking Coefficient
10-1
-2
100
10-1
Initial Sticking Coefficient
Laser pumped and thermally
populated molecular beam
experiments.
Ts = 475 K
Initial Sticking Coefficient
100
Initial Sticking Coefficient
Ni(111)
10
{
{
Expt
Ab Initio
DFT
Expt
Ab Initio
DFT
0
1.0
1.5
2.0
-1
1000/Ts [K ]
2.5
3.0
1985
(iv)
1990
1995
2000
Publication Year
Abbott et al., J Chem Phys 121, 3792 (2004)
2005
Comparison of Ts= 475 K Experiments
Surface Temperature, Ts [K]
556
100
CH4/Ni(100)
Ts = 475 K
23, J = 2
10-2
10-3
10-4
13, J = 2
10-5
Schmid et. al.
Juurlink et. al.
E0 = 65 kJ/mol
Thermal Pop.
Tn = 400 K
10-6
385
357
Nielsen et al. (3 mbar)
PC-MURT; E0 = 65kJ/mol
10-6
10-7
Ea = 59 kJ/mol
10-8
10-9
10-10
0
417
Ea = 70 kJ/mol
10-7
(a)
455
CH4/Ni(100)
Initial Sticking Coefficient
Initial Sticking Coefficient
10-1
500
10-5
20
40
60
80
100
Normal Translational Energy [kJ/mol]
1.8
(b)
2.0
2.2
2.4
2.6
2.8
1000/Ts [K-1]
7 order of magnitude difference in dissociative sticking coefficient
Application of PC-MURT to CH4/Ni(100):
Comparison of f(E*)s at Ts = 475 K
0.15
Nonequilibrium eigenstate
resolved experiment (23,
J = 2; Et = 93 kJ/mol).
Thermal bulb experiment
at 1010 x higher pressure.
0.20
f rv ( E rv ) E rv E J 2,2
0.10
3
0.15
S ( E *)
0.10
f ( E* )
ft ( Et )
f s ( Es )
0.05
0.05
0.00
0.00
0
50
100
150
Energy [kJ/mol]
Schmid et al., J. Chem. Phys. 117, 8603 (2002)
Nielsen et al., Catal. Lett. 32, 15 (1995)
Microcanonical Sticking Coefficient
TS 475 K
fT ( E * )
Distribution [mol/kJ]
S S ( E*) f ( E*) dE*
0
200
E* = 169 kJ/mol; SBeam = 0.15
E* = 17 kJ/mol; ST = 4.8 x 10-8
Fractional Energy Uptakes for
Thermal Sticking of CH4/Ni(100)
<E*>R
<Ev>R
Mean Energy [kJ/mol]
120
50
<Er>R
<Et>R
<Es>R
100
80
E0 = 65 kJ/mol
60
40
20
Fractional Energy Uptake (%)
140
0
fv
fs
fr
ft
30
20
10
200
(a)
40
400
600
Temperature [K]
800
1000
200
(b)
400
600
800
1000
Temperature [K]
Fractional energy uptakes are defined as f j E j
At T = 500 K, f g fv f r ft ~ 75%; f s 25%
R
E*
R
Mode Selective Chemistry: CD2H2/Ni(100)
Mode selective chemistry is
sometimes observed at surfaces!
Dissociative sticking coefficients for
CD2H2 rovibrational eigenstates and
for a thermally populated molecular
beam are shown at left.
CD2H2 may have insufficient mode
coupling slow IVR/collisional state
mixing.
Slow IVR requires a full dynamical
theory.
100
Initial Sticking Coefficient, S 0
10-1
10-2
10-3
10-4
10-5
Ts = 473 K
10-6
10-7
CH4
CD2H2
Tn = 423 K
Tn = 423 K
|20> State
23
10-8
|11> State
10-9
40
50
60
70
80
Translational Energy, Et [kJ/mol]
Beck et al. Science 302, 98 (2003)
The PC-MURT (lines) fails.
Effusive Beam S(Tg,Ts ) for CH4/Pt(111)
Surface Temperature, Ts [K]
PC-MURT can also be used to
predict S(Tg, Ts) sticking for
effusive molecular beams
where Tg = Tt = Tv = Tr; unlike
in supersonic beams.
Note the many opportunities to
measure “effective activation
energies”, “Ea”(Ts) Ea(T), in
these non-equilibrium
experiments.
Generally,
" Ea "(T j ) kb ln S E j
T j1
2000
R
667
500
400
10-1
Tg = 1000 K
10-2
10-3
10-4
10-5
Tg = 100 K
10-6
10-7
10-8
10-9
Ej
1000
100
Initial Sticking Coefficient
10-10
0.5
Thermal effusive beam
Thermal ambient gas
Nonequilibrium effusive beam
1.0
1.5
1000/Ts [K-1]
2.0
2.5
CH4 Reactivity Induced by Surface & Gas
Surface Temperature, Ts [K]
1250
1000
833
714
625
556
Surface Temperature, Ts [K]
500
625 500
417
357 313
10-3
10-4
Initial Sticking Coefficient, S
Initial Sticking Coefficient, S
227
CH4/Pt(111)
CH4/Pt(111)
Tg
680 K
600 K
10-5
500 K
10-6
400 K
295 K, angle
integrated
10-7
295 K
10-4
Ts
10-5
1100 K
1000 K
900 K
10-6
800 K
700 K
10-7
10-8
0.8
(a)
278 250
10-3
1.0
1.2
1.4
1.6
1000/Ts [K-1]
1.8
1.6
2.0
2.0
(b)
E0 = 49 kJ/mol
D = 330 cm-1 ARD = 41%
s=2
2.4
2.8
3.2
3.6
4.0
4.4
1000/Tg [K-1]
K. DeWitt et al. J. Phys. Chem. B
110, 6705 (2006)
Alkane Dissociative Chemisorption
PC-MURT Derived Threshold Energies
Fe
Co
Ni
CH4 below, C2H6 above.
Reduction in E0 from CH4 to
C2H6 on Pt(111) is
substantial; 52.5 ± 3 kJ/mol
→ 26.5 ± 3 kJ/mol.
DFT calculations for Pt(110)
yield E0 = 38.5 ± 2 kJ/mol
for both CH4 & C2H6.*
C2H6 E0: Final state effects,
dynamics, energy transfer?
E0 = 65 kJ/mol
Ru
Rh
Pd
E0 = 59 kJ/mol
E0 = 26.5 kJ/mol
Os
Ir
Pt
E0 = 39 kJ/mol
E0 = 52.5 kJ/mol
Abbott et al., J. Chem. Phys. 119, 6407 (2003) [Ni]
DeWitt et al., J. Phys. Chem. B 110, 6705, 6714 (2006) [Pt]
Abbott & Harrison. J. Phys. Chem. B 109, 10371 (2005) [Ir]
Abbott & Harrison. J. Catal. in press (2007) [Ru]
*Anghel
et al., Physical Review B 71, 113410 (2005);
Chem. Phys. Lett. 413, 289-293 (2005)
CH4 Dissociation on Flat Metal Surfaces
versus Nanocatalysts
Temperature, T [K]
CH4 Thermal Dissociative Sticking Coefficient, ST
1000
667
500
400
333
PC-MURT predicts thermal dissociative
sticking coefficients on flat metal surfaces
many orders of magnitude higher than
apparent values measured on
nanocatalysts.
A surprising result since stepped surfaces,
as found on high curvature nanocatalysts,
are typically thought to be more active
than flat surfaces.
Presumably, C build-up quickly limits the
number of active sites available on the
nanocatalysts. Not a bare surface limit.
There seems to be substantial opportunity
for improving CH4 reforming catalysts.
10-1
Ir(111)
Pt(111)
Ru(0001)
Ni(100)
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
Ir (2 nm)
Pt (2 nm)
Ni (7 nm)
Ru (3 & 6 nm)
10-10
10-11
}
Nanocatalyst
(diameter)
10-12
1.0
1.5
2.0
2.5
3.0
-1
1000/T [K ]
Abbott & Harrison, J. Catal 254, 27-38 (2008)
Wei & Iglesia. Angew. Chem. Int. Ed. 43, 3685 (2004) [Ir]
Wei & Iglesia. J. Phys. Chem. B 108, 4094 (2004) [Pt]
Wei & Iglesia. J. Catal. 224, 370 (2004) [Ni]
Wei & Iglesia. J. Phys. Chem. B 108, 7253 (2004) [Ru]
Carstens & Bell . J. Catal. 161, 423 (1996) [Ru]
Dissociative Chemisorption & Associative
Desorption Dynamics of H2/Cu(111)
Can the PC-MURT provide at least a statistical baseline for
the dissociative chemisorption/desorption dynamics?
H2(g) + Cu(111) ↔ 2 H(c)
Employ detailed balance at thermal equilibrium to predict the
associative desorption fluxes.
Two PC-MURT models:
2 parameter (E0 = 79 kJ/mol, s = 1) model with active rotations.*
3 parameter (E0 = 62 kJ/mol, D = 490 cm-1, s = 1) model with rotation
as a spectator to the dissociation dynamics.†
* Abbott
& Harrison, J. Chem. Phys. 125, 024704 (2006); †Abbott & Harrison, J. Phys. Chem. A 111, 9871 (2007)
Detailed Balance at Thermal Equilibrium
Desorption Flux = Dissociative Sticking Flux
D0 = SF0
H 2( p )
R( E , E ')
R( E ', E )
F (E)
kR ( E )
H 2( p )
H(c) H(c)
H 2( g )
Also applicable to state-resolved flux balances,
kD ( E )
D( Et , Ev , Er ,J,;T )
S ( Et , Ev , Er ,J,;T ) F0 f MB ( Et , Ev, Er,J,;T )
PC
Energy
H2(g)
H(c) + H(c)
E0
E*
ED
Ead
E
Reaction Coordinate
T = Tg = Ts
ER = E0 + ED
H2/Cu(111) PC-MURT: Rotation as a Spectator
State-Averaged Chemisorption Experiments
100
100
H2/Cu(111)
Ts = 120 K
10-1
10-2
10-3
Tn = 2100 K
10-4
Tn = 2000 K
Tn = 1740 K
10-5
Sticking Coefficient, S
Sticking Coefficient, S
10-1
D2/Cu(111)
Ts = 120 K
E0 = 62 kJ/mol
D = 490 cm-1
s=1
ARD = 570%
10-2
10-3
10-4
Tn = 2100 K
10-5
Tn = 1650 K
Tn = 1465 K
Tn = 1460 K
10-6
Tn = 1235 K
10-6
Tn = 1170 K
Tn = 1135 K
10-7
10-7
0
20
40
0
60
Translational Energy, Et [kJ/mol]
(a)
Experiment
PC-MURT
(b)
20
40
60
80
Translational Energy, Et [kJ/mol]
Rettner et al. J. Chem. Phys. 102, 4625 (1995); Michelsen et al. J. Chem. Phys. 98, 8294 (1993)
Absolute dissociative sticking coefficients for thermally populated molecular
beams of H2 & D2 at specified nozzle temperatures.
H2/Cu(111) PC-MURT: Rotation as a Spectator
State-Averaged Desorption Experiments
1.5
Cos
Cos10
Cos12
1.0
Angular Distribution, P()
0.5
0.0
Ts = 600 K
Cos12
Cos14
1.0
0.5
0.0
Ts = 370 K
1.0
Cos19
Cos22
0.5
D2/Cu(111)
Ts = 600 K
10
1.0
Angular Distribution, P()
1.5
Ts = 800 K
D2/Cu(111)
Cos14
0.5
E0 = 62 kJ/mol
D = 490 cm-1
s=1
ARD = 24%
0.0
H2/Cu(111)
Cos12
1.0
Cos13
Experiment
PC-MURT
0.5
0.0
0.0
-60
(a)
-40
-20
0
20
40
60
Desorption Angle [degrees]
-60
(b)
-40
-20
0
20
40
60
Desorption Angle [degrees]
Rettner et al. J. Chem. Phys. 94, 7499 (1991)
Angular distributions and cosnJ fits for H2 & D2 recombinative desorption at various
surface temperatures.
5D quantum calculations* predict cos25J for H2 on Cu(111) at Ts = 1000 K.
*
Gross et al. Phys. Rev. Lett. 73, 3121 (1994) with E0 = 70 kJ/mol; E0 = 48.5 kJ/mol is recent DFT expectation.
Mean Translational Energy, <Et> [kJ/mol]
D2/Cu(111) PC-MURT: Rotation as a Spectator
State-Averaged Desorption Experiments
200
D2/Cu(111)
Ts = 1000 K
to infinity
5D quantum calculations,*
like the 1-D van Willigen
model,† predict increasing
<Et> with J.
Catastrophe for 1-D model
as J →90°.
PC-MURT behaves
correctly as J →90°.
5D quantum
Experiment
1D model
PC-MURT
150
100
50
2kBTs
0
0
10 20 30 40 50 60 70 80 90
Desorption Angle, J [degrees]
Comsa & David Surf. Sci. 117, 77 (1982)
*
Gross et al. Phys. Rev. Lett. 73, 3121 (1994) with E0 = 70 kJ/mol.
†
van Willigen, Phys. Lett. 28A, 80 (1968)
H2/Cu(111) PC-MURT: Rotation as a Spectator
Eigenstate-Resolved Desorption Experiments
Product Energy Distribution, P(Et)
0.0030
H2/Cu(111)
( = 0, J = 1)
0.0025
Experiment
PC-MURT
Ts = 370 K
0.0020
Ts = 600 K
0.0015
Ts = 900 K
0.0010
0.0005
0.0000
0
20
40
60
80
100
120
Translational Energy, Et [kJ/mol]
Murphy & Hodgson J. Chem. Phys. 108, 4199 (1998)
By detailed balance, Hodgson’s
desorption experiments yield:
S ( Et ; v, J , Ts )relative
P( Et ; v, J , Ts )
f MB ( Et ;Ts )
H2/Cu(111) PC-MURT: Rotation as a Spectator
Eigenstate-Resolved Desorption Experiments
Surface Temperature, Ts [K]
1000
667
500
400
333
100
80
58 kJ/mol
Sticking Coefficient, S(Ts)
10-2
10-3
10-4
39 kJ/mol
10-5
10-6
10-7
19 kJ/mol
10-8
10-9
H2/Cu(111)
10-10
( = 0, J = 1)
D2/Cu(111)
10-12
1.0
(a)
Effective Activation Energy, "Ea(Ts)" [kJ/mol]
Et
10-1
10-11
" Ea (Ts )" kB
286
5 kJ/mol
( = 0, J = 2)
H2/Cu(111)
D2/Cu(111)
60
2.0
2.5
1000/Ts [K-1]
3.0
3.5
R
Es
( = 0, J = 2)
Thus,
Es
40
R
" Ea (Ts )" Es
and expts show,
20
Es
0
1.5
Es
( = 0, J = 1)
ln S
Ts1
0
(b)
10
20
30
40
50
60
70
Translational Energy, Et [kJ/mol]
for Et E0 Ev
50 kJ/mol
at the lowest Ets.
For one surface oscillator, the PC-MURT analytically requires,
" Ea (Ts )"
1
Et
R
H2/Cu(111) PC-MURT: Rotation as a Spectator
Eigenstate-Resolved Desorption Experiments
Hodgson’s experiments clearly
demonstrate that the surface is not a
spectator!
Later, we will show that the fractional energy uptakes for surmounting
the thermal activation energy for dissociation at 925 K are roughly:
ft = 42%
fs = 41%
fv = 17%
So, the surface plays an essential role in the dissociation dynamics.
H2/Cu(111) PC-MURT: Rotation as a Spectator
Rotationally-averaged, vibrationally-resolved P(Et )
0.0025
H2/Cu(111)
Ts = 925 K
=1
0.0020
=0
Experiment
PC-MURT
0.0015
0.0010
0.0005
Product Energy Distribution, P(Et)
Product Energy Distribution, P(Et)
0.0025
=1 =0
0.0020
Experiment
PC-MURT
0.0015
0.0010
0.0005
0.0000
0.0000
0
(a)
D2/Cu(111)
Ts = 925 K
=2
20
40
60
80
100
120
Translational Energy, Et [kJ/mol]
0
140
(b)
20
40
60
80
100
120
140
Translational Energy, Et [kJ/mol]
Rettner et al. J. Chem. Phys. 102, 4625 (1995); Michelsen et al. J. Chem. Phys. 98, 8294 (1993)
Qualitative agreement
Averaged over rotational states, J = 0 – 6
E0 = 62 kJ/mol
D = 490 cm-1
s=1
H2/Cu(111) PC-MURT: Rotation as a Spectator
Eigenstate-Resolved Desorption Experiments
Rotational Energy, Er [kJ/mol]
4.4
14.4
29.6
49.5
73.3
100
=0
=1
H2/Cu(111)
Ts = 925 K
80
60
40
20
0
2
4
6
Rotational State, J
(a)
8
0
Mean Translational Energy, <Et> [kJ/mol]
Mean Translational Energy, <Et> [kJ/mol]
0
Rotational Energy, Er [kJ/mol]
10
7.2 15.0 25.4 38.3 53.4 70.3
=0
=1
=2
D2/Cu(111)
Ts = 925 K
80
E0 = 62 kJ/mol
D = 490 cm-1
s=1
ARD = 16 %
60
40
Experiment
PC-MURT
20
0
(b)
2.1
100
2
4
6
8
10
12
14
Rotational State, J
Rettner et al. J. Chem. Phys. 102, 4625 (1995); Michelsen et al. J. Chem. Phys. 98, 8294 (1993)
Mean translational energies for H2 & D2 as a function of rotational state agree
well with PC-MURT for J ≤ 6. These are the key J states at thermal energies.
Divergence for J ≥ 7 shows that rotational energy begins to facilitate sticking at
high J and Er ≥ 40 kJ/mol (n.b., at 925 K, <Er(T)>= kBT = 7.7 kJ/mol).
H2/Cu(111) PC-MURT: Rotation as a Spectator
Eigenstate-Resolved Desorption Experiments
Rotational State, J
Rotational State, J
5
0..2 3 4
6
7
8
0... 4 5 6 7 8
10
9
9 10 11 12 13 14
10-1
10-3
P,J /gn(2J+1)
P,J /gn(2J+1)
10-2
10-3
10-4
10-5
10-5
Experiment
PC-MURT
D2/Cu(111)
Ts = 925 K
10-7
0
E0 = 62 kJ/mol
D = 490 cm-1
s=1
ARD = 221 %
10-4
10-6
H2/Cu(111)
Ts = 925 K
10-6
(a)
=0
=1
=2
10-2
=0
=1
20
40
60
Rotational Energy, Er (kJ/mol)
0
80
(b)
20
40
60
80
Rotational Energy, Er (kJ/mol)
Arrhenius fit lines through PC-MURT rotational energy distributions for
recombinative desorption of H2 & D2 are for Tr = Ts = 925 K.
H2/Cu(111) PC-MURT: Rotation as a Spectator
Vibrational Energy Distribution for Desorption
H2
D2
J
Expt (%)
PC-MURT(%)
0
1
0-10
0-7
96.7
3.3
100
82.4
16.8
0.8
100
90.9
9.0
99.9
75.3
22.7
1.9
99.9
∑P,J
0
0-14
1
0-12
2
0-8
∑P,J
Somewhat less vibrational energy in associatively
desorbed hydrogen than theoretically predicted.
Early rather than Late Barrier for Dissociation!
Experiments show more translational energy and less
vibrational energy release in the associatively desorbing
hydrogen than the PC-MURT predicts.
By detailed balance, dissociative chemisorption favors
translational energy over vibrational energy as compared to
the statistical PC-MURT predictions.
The measured vibrational efficacy for dissociative
chemisorption is only 50% of the translational efficacy.*
Appropriate to an early transition state on the dissociative
potential energy surface according to the Polanyi rules.†
*Rettner
et al. J. Chem. Phys. 102, 4625 (1995)
Acc. Chem Res. 5, 161 (1972)
† J.C.Polanyi,
Early not Late Barrier!
Transition State Characteristics
GGA-DFT
PC-MURT
E0 = 48 kJ/mol
D = 405 cm-1
E0 = 62 kJ/mol
D = 490 cm-1
s=1
GGA-DFT: late barrier
Db‡ > 33% beq
b
Z
• GGA-DFT invariably predicts late
barriers for the dissociation of
diatomic molecules but the
H2/Cu(111) dynamics provide
evidence for an early barrier.
• Impact on Brønsted-Evans-Polanyi
correlations:
Ea a DE
LDA-DFT: early barrier
where a < 0.5 for early barriers
Db‡ < 10% beq
and a > 0.5 for late barriers.
H2/Cu(111) PC-MURT: Rotation as a Spectator
Thermal & Effusive Beam Sticking
Surface Temperature, Ts [K]
2000 1000
667
500
400
333
286
100
Tg = 2100 K
Initial Sticking Coefficient, S
10-1
10-2
10-3
Tg = 300 K
Tg = Ts
10-6
10-7
H2/Cu(111)
10-8
zero degree
angle integrated
Expt. for H2/Cu(110)
10-9
10-10
0.5
1.0
1.5
2.0
1000/Ts [K-1]
2.5
3.0
More than an order of magnitude
variation in ST if rotations are
active. Dynamics matter!
Rettner employed an erf-model
with over 100 parameters to
predict the 925 K thermal sticking
for D2/Cu(111) based on his
eigenstate-resolved desorption
experiments.*
10-4
10-5
D2/Cu(111)
ST(925)expt = 3.29 x 10-4
ST(925)PC-MURT = 2.16 x 10-4 (no rotations)
ST(925)PC-MURT = 1.4 x 10-5 (with rotations)
3.5
The 3-parameter PC-MURT is in
good agreement with the ST(925
K) for D2/Cu(111) and the
H2/Cu(110) measurements.†
*Rettner
et al. Faraday Discuss. 96, 17 (1993)
et al., JVST A 9, 1693 (1991)
†Campbell
Energy Uptake in Thermal Sticking of H2/Cu(111)
Temperature, T [K]
1000
667
500
400
333
286
1000
667
50
H2/Cu(111)
60
Fractional Energy Uptakes [%]
H2/Cu(111)
80
Mean Energies [kJ/mol]
Temperature, T [K]
<E*>R
<Et>R
<Es>R
<Ev>R
E0 = 62 kJ/mol
40
20
400
333
286
40
ft
fs
fv
30
20
10
0
0
1.0
(a)
500
1.5
2.0
2.5
1000/T [K-1]
3.0
1.0
3.5
(b)
1.5
2.0
2.5
3.0
3.5
1000/T [K-1]
Mean energies and fractional energy uptakes, fi = EiR/E*R, calculated by
PC-MURT are shown for thermal sticking from an ambient gas.
Molecular normal translational energy contributes most to overcoming E0.
More than 40% of the reactive energy comes from surface phonons!
PC-MURT Predictions with Active Rotation:
D2/Cu(111) Associative Desorption
Rotational State, J
0
9 10 11 12 13 14
Mean Translational Energy, <E t> [kJ/mol]
0... 4 5 6 7 8
Rotational Energy, Er [kJ/mol]
=0
=1
=2
10-2
P,J /gn(2J+1)
10-3
10-4
10-5
10-6
D2/Cu(111)
Ts = 925 K
0
20
40
60
Rotational Energy, Er (kJ/mol)
80
2.1
7.2 15.0 25.4 38.3 53.4 70.3
100
=0
=1
=2
D2/Cu(111)
Ts = 925 K
80
E0 = 79 kJ/mol
s=1
60
Experiment
PC-MURT
40
20
0
2
4
6
8
10
12
14
Abbott & Harrison,
J. Chem. Phys. 125,
024704 (2006)
Rotational State, J
Rotational temperatures predicted by the PC-MURT are Tr ~ 6000 K. Lines
through the experimental solid points are for Tr = Ts = 925 K.
The Boltzmann plots of the experimental data indicate that rotation is a spectator
until Er ~ 40 kJ/mol is exceeded.
The initial rise of the experimental <Et> with J seems to be a modest dynamical
effect, the subsequent fall in <Et> can be rationalized by the statistical PC-MURT
predictions.
H2/Cu(111) Dynamics: Rotation as a Spectator
Rotational Energy, Er [kJ/mol]
4.4
14.4
29.6
49.5
Rotational Energy, Er [kJ/mol]
73.3
0
100
Mean Translational Energy, <Et> [kJ/mol]
Mean Translational Energy, <Et> [kJ/mol]
0
=0
=1
H2/Cu(111)
Ts = 925 K
80
60
40
20
0
2
(a)
4
6
8
5
6
7
8
=0
=1
=2
80
2
4
6
8
10
12
Rotational State, J
10
0... 4 5 6 7 8
9 10 11 12 13 14
10-1
P,J /gn(2J+1)
P,J /gn(2J+1)
10-3
10-4
10-5
10-4
10-5
10-6
H2/Cu(111)
Ts = 925 K
D2/Cu(111)
Ts = 925 K
10-7
10-6
0
(c)
=0
=1
=2
10-2
10-3
20
40
60
Rotational Energy, Er (kJ/mol)
0
80
(d)
Consequently, at thermally
accessible energies,
rotation is effectively a
spectator degree of
freedom and dynamical
steering is of negligible
importance.
14
Rotational State, J
10-2
20
0
=0
=1
The dissociation dynamics
appear to transition from
rotation as a spectator for
Er < 40 kJ/mol to rotation
as statistically participatory
for Er > 40 kJ/mol.
40
(b)
9
60
Rotational State, J
0..2 3 4
7.2 15.0 25.4 38.3 53.4 70.3
D2/Cu(111)
Ts = 925 K
10
Rotational State, J
2.1
100
20
40
60
Rotational Energy, Er (kJ/mol)
Abbott & Harrison, J. Phys. Chem. A 111, 9871 (2007)
80
Summary
The MURT local hot spot model was used to explain and simulate a variety of
activated dissociative chemisorption/associative desorption dynamics.
Benchmark transition state characteristics can be extracted by low parameter
MURT analysis of diverse experiments with high dynamic range.
MURT may be helpful in closing the “nonequilibrium gap” between surface
science and catalysis (e.g., CH4 beam experiments and thermal catalysis).
Most of the energy for thermal activated dissociative chemisorption comes
from the gas but surface phonons cannot be neglected – even for H2 on
Cu(111)!
Dynamical effects can sometimes produce order of magnitude changes in
dissociative sticking coefficients (e.g., if rotation is a spectator) and hence are
vital to know about. The MURT can provide statistical baseline predictions
against which dynamical effects can be identified when they occur (e.g., early
transition states; a < 0.5 in Brønsted-Evans-Polanyi correlations).
Acknowledgements
National Science Foundation
American Chemical Society Petroleum Research Fund
For a brief description of MURT and references: http://faculty.virginia.edu/harrison/murt.htm
Heather Abbott
MURT Kinetics Alumni:
Leticia Valadez and Kristy DeWitt
Dr. Heather Abbott – Humboldt Fellow, FHI, Berlin
Dr. Alex Bukoski – Resident, Veterinary Anesthesiology, U. Florida
Dr. Kristy DeWitt – Optical Air Data Systems
Dan Blumling – Ph.D. student, Penn State
Dave Kavulak – Ph.D. student, UC Berkeley
Prof. Kurt Kolasinski
(West Chester University)
Synopsis of PC-MURT for CO2/Rh(111)
Rotation a spectator
Frequencies from GGA-DFT
E0 = 73 kJ/mol
s=2
Goodman et al., Surf. Sci. 140, L239 (1984)
Sibner et al., J. Chem. Phys. 89, 1163 (1989);
103, 6677 (1995)
Coulston & Haller, J. Chem. Phys. 95, 6932
(1991)
1000
667
500
10-2
CO2/Rh(111)
10-3
-4
10
400
333
286
Tg = 1000 K
Angular Distribution, P(J)
10-5
10-6
10-7
10-8
10-9
10-10
Tg = Ts
Tg = 300 K
10-11
10-12
10-13
zero degree
angle integrated
Goodman et al.
10-14
1.0
1.5
CO2/Rh(111)
Ts = 500 K
1.0
O ~ 0.1 ML
0.8
0.6
0.4
Experiment
PC-MURT
0.73 cos9.4J 0.27 cosJ
0.2
0.0
2.0
2.5
3.0
0
3.5
10
40
CO2/Rh(111)
Ts = 500-1000 K
30
20
1000 K
900 K
800 K
700 K
0
30
40
50
Desorption Angle, J [ ]
1000/Ts [K ]
10
20
o
-1
600 K
500 K
40
Mean Vibrational Energy [kJ/mol]
CO oxidation dynamics
by detailed balance.
Initial Sticking Coefficient, S
CO2 dissociative
sticking in thermal bulb.
Mean Translational Energy [kJ/mol]
Surface Temperature, Ts [K]
Experiment
PC-MURT
65% Thermal
CO2/Rh foil
Ts = 584 K
30
1 = 1330 cm-1
2 = 665 cm-1
3 = 2350 cm-1
20
10
0
0
20
40
60
Desorption Angle, J [ ]
o
80
1
2
3
Vibrational Mode, i
Abbott & Harrison, J. Phys. Chem. C 111, 13137 (2007)
60
Synopsis of PC-MURT for SiH4/Si(100)
Thermally populated
molecular beam experiments
Thermal nonequilibrium
experiments (UHV-CVD)
10-1
10-1
1% SiH4 in H2
10-2
<Et,>
Tn
92 kJ/mol
80 kJ/mol
423 K
599 K
62 kJ/mol
44 kJ/mol
34 kJ/mol
463 K
328 K
423 K
Tn ~ 289 K to 825 K
Initial Sticking Coefficient
Dissociative sticking
probabilities for
Initial Sticking Coefficient
1% SiH4
10-2
Ts = 1173 K
in He
Ts = 1173 K
in H2
Ts = 973 K
in H2
10-3
0.8
E0 = 19 kJ/mol
D = 230 cm-1 ARD = 15%
s=2
Engstrom et al. J. Vac Sci. and Tech. A 13, 2651
(1995)
For other references see:
Kavulak et al. J. Phys. Chem. B 109, 685 (2005)
1.0
1.1
1000/Ts [K-1]
40
50
60
70
80
90
<Et,> Translational Energy [kJ/mol]
1.2
(b)
10-2
80
Experimental
Tg = 300 K
Activation Energy [kJ/mol]
Corrugated Si(100)-(2x1)
surface
Initial Sticking Coefficient
0.9
(a)
10-3
"Ea"(1000 K) = 26 kJ/mol
Mercier et al. (0.005 mbar)
10-4
Liehr et al. (0.0004 mbar)
Liehr et al. (0.004 mbar)
Ab Initio
DFT
60
PC-MURT
40
Ea(1000 K) = 31 kJ/mol
20
E0 = 19 kJ/mol
Behm et al. (0.002 mbar)
Gates et al. (0.006 mbar)
10-5
0
0.8
(c)
1.0
1.2
1000/Ts [K-1]
1.4
1988
1.6
(d)
1992
1996
Publication Year
2000
Synopsis of PC-MURT for CH4/Ni(100)
Dissociative sticking
probabilities for:
Ts = 475 K
10
23, J = 2
-3
Thermal “bulb” equilibrium
experiments.
661 K
627 K
570 K
10-5
(a)
Juurlink et. al.
E0 = 65 kJ/mol
Thermal Pop.
10-7
20
40
60
80
100
E0 = 65 kJ/mol
D = 170 cm-1 ARD = 43%
s=2
10
10
-1
10-6
0
95 110
(b)
10-5
10-5
Ea = 70 kJ/mol
10-6
Ea = 59 kJ/mol
1000/Ts [K-1]
Ts = 475 K
<Et>
90 kJ/mol
10-3
70 kJ/mol
10-4
50 kJ/mol
10-5
10-6
30 kJ/mol
10-7
10 kJ/mol
0.8 1.1 1.4 1.7 2.0 2.3 2.6
1000/Tn [K-1]
(d)
PC - MURT
Ea = 70 kJ/mol
E0 = 65 kJ/mol
100
10-7
80 100 120 140
10-2
1.2 1.6 2.0 2.4 2.8 3.2 3.6
110
10-4
60
10-9
120
10-3
40
10-8
(ii)
Nielsen et al.
(3 mbar)
20
Normal Translational Energy [kJ/mol]
10-1
10-4
10-8
(iii)
80
10-3
PC-MURT
(E0 = 65 kJ/mol)
10-2
10-10
0.5
65
Et = 53 kJ/mol, Tn = 811 K
Et = 43 kJ/mol, Tn = 570 K
Et = 24 kJ/mol, Tn = 757 K
10-2
90
80
70
60
50
Ni(100)
40
30
20
10-9
Schmid et al., J. Chem. Phys. 117, 8603 (2002)
Expts: Juurlink et al., Phys. Rev. Lett. 83, 868 (1999)
Homblad et al., J. Chem. Phys. 102, 8255 (1995)
Nielsen et al., Catal. Lett. 32, 15 (1995)
50
980 K
895 K
806 K
716 K
625 K
10-5
Normal Translational Energy [kJ/mol]
Activation Energy [kJ/mol]
Extract transition state
parameters for comparison to
electronic structure theory.
Initial Sticking Coefficient
Tn [K]
10-4
3% CH4 in He
35
(c)
0
10-3
10-6
Normal Translational Energy [kJ/mol]
(i)
10-2
10-1
Tn ~ 400 K
0
10-1
3% CD4 in He
20
Schmid et. al.
716 K
10-4
10-6
10-6
836 K
742 K
10-4
13, J = 2
931 K
897 K
805 K
10-3
534 K
10-5
Ts = 475 K
962 K
894 K
Initial Sticking Coefficient
10
10-2
Initial Sticking Coefficient
10-1
-2
100
10-1
Initial Sticking Coefficient
Laser pumped and thermally
populated molecular beam
experiments.
Ts = 475 K
Initial Sticking Coefficient
100
Initial Sticking Coefficient
Ni(111)
10
{
{
Expt
Ab Initio
DFT
Expt
Ab Initio
DFT
0
1.0
1.5
2.0
-1
1000/Ts [K ]
2.5
3.0
1985
(iv)
1990
1995
2000
Publication Year
Abbott et al., J Chem Phys 121, 3792 (2004)
2005
Synopsis of PC-MURT for CH4/Pt(111)
100
100
Tn = 680 K
10-1
10-2
CH4 at Tn = 680 K
10-3
CH4 at Tn = 300 K
Initial Sticking Coefficient
Initial Sticking Coefficient
Ts = 800 K
Eb = 1.27 eV
Eb = 0.62 eV
10-1
Eb = 0.48 eV
Eb = 0.42 eV
10-2
10-3
CD4 at Tn = 680 K
10-4
10-4
0.0
(a)
0.2
0.4
0.6
0.8
1.0
1.2
0.5
1.4
Normal Translational Energy [eV]
Luntz & Bethune J. Chem. Phys. 90, 1274 (1989);
1.5
(b)
2.5
3.5
4.5
5.5
1000 / Ts
Harris et al. Phys. Rev. Lett. 67, 652 (1991)
Dissociative sticking probabilities for thermally populated supersonic
molecular beam experiments by Luntz & Bethune.
Extract transition state parameters for comparison to electronic
structure theory. (E0 = 43, 64, 75, and 81 kJ/mol are EST calculations)
For details see: Bukoski et al. J Chem Phys 118, 843 (2003)
E0 = 56 kJ/mol
D = 125 cm-1
s=3
ARD = 34%
Synopsis of PC-MURT for CH4/Ir(111)
100
100
10-1
Initial Sticking Coefficient
Initial Sticking Coefficient
Mullins et al.
PC-MURT
Ts = 1000 K
300 Tn 832 K
10-2
10-3
10-4
10-4
10-1
10-2
4
8
10-3
Thermally populated
molecular beam
experiments.
Thermal equilibrium and
nonequilibrium
experiments.
En = 40 kJ/mol
En = 30 kJ/mol
10-5
0
(a)
20
40
60
80
100
120
0.8
140
1.2
1.6
2.0
2.4
2.8
-1
1000/Ts [K ]
(b)
Translational Energy [kJ/mol]
10-3
10-1
Tg = T s
Tg = 300 K
10-2
10-4
Initial Sticking Coefficient
Initial Sticking Coefficient
10-4
12
10-5
"Ea" = 27 kJ/mol
10-5
"Ea" = 43 kJ/mol
"Ea" = 53 kJ/mol
10-6
PC-MURT
10-7
Mullins et al. (~10-4 mbar)
Ea = 48 kJ/mol
10-3
E0 = 39 kJ/mol
D = 185 cm-1 ARDMB = 88%
s=1
10-4
Ea = 72 kJ/mol
10-5
10-6
PC-MURT (E0 = 39 kJ/mol)
10-7
[c.f., EST calculations of E0 = 15 and 76 kJ/mol]
Weinberg et al. (~1 mbar)
-3
Weinberg et al. (~10 mbar)
10-8
10-8
0.8
(c)
Dissociative sticking
probabilities for:
Tn = 669 K
10-5
0
En = 107 kJ/mol
1.0
1.2
1.4
1.6
-1
1000/Ts [K ]
1.8
2.0
0.8
(d)
1.0
1.2
1.4
1.6
1.8
2.0
-1
1000/T [K ]
Abbott & Harrison, J. Phys. Chem. B 107, 10371 (2005)
Seets et al. J. Chem. Phys. 107, 10229 (1997)
Jachimowski et al. Surf. Sci. 393, 126 (1997)
Synopsis of PC-MURT for CH4/Ru(0001)
Surface Temperature, Ts [K]
1000
500
400
333
286
CH4/Ru(0001)
Ru(0001)
Ts = 600 K
Tn = 700 K
10-1
Initial Sticking Coefficient
Initial Sticking Coefficient
667
100
10-2
10-3
CH4
CD4
10-2
Dissociative sticking
probabilities for:
10-3
10-4
Thermally populated
molecular beam
experiments.
Thermal bulb experiments.
Supported catalysts.
10-5
10-6
En = 83.0 kJ/mol, Tn = 1057 K
En = 51.5 kJ/mol, Tn = 656 K
10-7
En = 44.5 kJ/mol, Tn = 656 K
En = 41.5 kJ/mol, Tn = 535 K
10-8
10-4
40
(a)
50
60
70
1.0
80
Normal Translational Energy [kJ/mol]
1.5
2.0
2.5
3.0
3.5
1000/Ts [K-1]
(b)
Surface Temperature, Ts [K]
1000
CH4/Ru(0001)
Ts = 600 K
Tn = 450-1250 K
10-3
10-2
10-3
10% CH4 in Ar
10-4
100% CH4
25% CH4 in He
10-5
Initial Sticking Coefficient
Initial Sticking Coefficient
10-1
3% CH4 in He
500
400
333
286
10-6
0
20
40
60
80
100
Normal Translational Energy [kJ/mol]
CH4/Ru(0001)
Tg = Ts
10-4
Egeberg et al.
Wu & Goodman
Ru/Al2O3
Ru/SiO2
10-5
E0 = 59 kJ/mol
D = 155 cm-1 ARD = 316%
s=2
10-6
10-7
Tg = 300 K
10-8
10-9
10-10
3% CH4 in H2
(c)
667
10-2
100
10-11
1.0
120
(d)
1.5
2.0
2.5
1000/Ts [K-1]
Abbott & Harrison, J. Catal 254, 27-38 (2008)
3.0
3.5
Luntz et al., J. Chem. Phys. 116, 5781 (2002)
Chorkendorff et al., J. Chem. Phys. 110, 2637 (1999)
Egeberg et al., Surf. Sci. 497, 183 (2002)
Wu & Goodman, J. Chem. Phys. 110, 2637 (1999)
C2H6/Pt(111): Effusive Beam Experiments
Surface Temperature, Ts [K]
Surface Temperature, Ts [K]
1250 833 625 500 417 357 313 278
250
1250 833 625 500 417 357 313 278
10-2
10-2
Tg = Ts
10-3
Tg = Ts
Tg
10-4
680 K
600 K
10-5
500 K
400 K
10-6
zero degree
angle integrated
Initial Sticking Coefficient
Initial Sticking Coefficient
C2H6/Pt(111)
500 K
10-4
400 K
10-5
295 K
10-6
zero degree
angle integrated
10-7
0.8
(a)
Tg
680 K
600 K
10-3
295 K
10-7
250
1.2
1.6
2.0
2.4
2.8
3.2
1000/Ts [K-1]
3.6
4.0
0.8
(b)
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
1000/Ts [K-1]
DeWitt et al., J. Phys. Chem. B 110, 6714 (2006)
E0 = 24 kJ/mol
D = 215 cm-1
s = 10
ARD = 53 %
E0 = 29 kJ/mol
D = 90 cm-1
s=2
ARD = 556 %
AngleIntegrated
ARD = 13 %
C2H6/Pt(111): Supersonic Beam Expts
100
100
C2H6/Pt(111)
Initial Sticking Coefficient
Initial Sticking Coefficient
C2H6/Pt(111)
10-1
10-2
10-3
Tn = 770-900 K
10-1
10-2
Tn = 770-900 K
Tn = 472-823 K
Tn = 472-823 K
10-4
10-3
50
(a)
75
100
125
150
175
200
225
Normal Translational Energy [kJ/mol]
50
(b)
75
100
125
150
175
200
Normal Translational Energy [kJ/mol]
Schoofs et al., Surf. Sci. 215, 1 (1989); Newell et al., Faraday Discuss. 105, 193 (1996)
E0 = 24 kJ/mol
D = 215 cm-1
s = 10
ARD = 3032 %
225
Increasing Tnozzle
increases S.
E0 = 29 kJ/mol
D = 90 cm-1
s=2
ARD = 48 %
Recommended Transition State Parameters
for C2H6 on Pt(111)
Temperature, T [K]
1000
667
500
400
333
286
10-1
C2H6/Pt(111)
Initial Sticking Coefficient, S
10-2
Ea = 31 kJ/mol
10-3
"Ea " = 26 kJ/mol
E0 = 26.5 ± 3 kJ mol-1
D = 153 ± 63 cm-1
s = 2 (or 10)
10-4
10-5
Translational, vibrational, and
surface energy certainly help
facilitate dissociation.
10-6
Ea = 37 kJ/mol
10-7
10-8
Tg = Ts
10-9
Tg = 300 K
Rodriguez & Goodman (1 Torr)
10-10
1.0
1.5
2.0
2.5
3.0
3.5
1000/T [K-1]
Rodriguez & Goodman, J. Phys. Chem. 94, 5342 (1990)
The role of rotational energy is
less clear – rotation might even
inhibit dissociation.