幻灯片 1 - Sun Yat-sen University
Download
Report
Transcript 幻灯片 1 - Sun Yat-sen University
Engineering Circuit Analysis
CH6 Polyphase Circuits
6.1 Polyphase System
6.2 Notations
6.3 Single-phase Three-wire Systems
6.4 Three Phase Y Y connection
6.5 The Delta ( ) Connection
6.6 Power measurement
Ch6 Polyphsae Circuits
6.1 Polyphase System
Polyphase system : system with polyphase sources
Single source (Vs)
Notice the instantaneous voltage maybe zero
The instantaneous power will be zero
V
T
V
3T
2T
t
They all have 120o phase differences
The instantaneous power will
never be zero.
Poly sources ( Vs1 ,Vs2 ,Vs3 )
T
2T
3T
t
Ch6 Polyphsae Circuits
6.1 Polyphase System
V Vs1 Vs2 Vs3
• The incident with a zero instantaneous power has been exempted.
• The source power can be delivered more stably.
• The polyphase systems can provide multiple output voltage levels.
• Polyphase systems in practice certain sources which maybe approximated
by ideal voltage sources, or ideal voltage sources in series with small
internal impedances.
Ch6 Polyphsae Circuits
6.2 Notations
a
b
8A
For note c :
5A 8A I cd , I cd 3A
For note f :
I ef 4A 3A , I ef 7A
For note j :
Iij 3A 4A10A , Iij 7A
4A
e
d
c
I de 2A
I cd ?
5A
I ef
6A
g
h
f
Iij
j
i
2A
10 A
k
I fj 3A
l
Ch6 Polyphsae Circuits
6.2 Notations
c
Van 10000V
n
b
Vbn 100 1200V
a
Vcn 100 2400V
Vab Van Vnb
The voltage of
point a with
respect to point b
a +; b -;
Van Vbn
10000V 100 1200V
173.2300V
Similarly, Iab denotes the current from point a to b.
Test with graphical analysis ? (Using the phasor diagram)
Ch6 Polyphsae Circuits
6.3 Single-phase Three-wire Systems
Function: allowing household electronics operating at two levels of
voltages to be applied.
a
n
1-phase
3-wire
Source
b
a
V1
V2
n
b
Voltage characteristics
Van Vnb
Vab 2Van 2Vnb
Household electronics may either operate with
110 V or with 220 V
Phase characteristics
Van Vnb
Van Vbn 0
Van Vbn
Ch6 Polyphsae Circuits
6.3 Single-phase Three-wire Systems
a
A
I Nn IbB I aA
Zp
V1
n
N
Zp
V1
B
Current characteristics
b
I bB
V1
Zp
I Aa
V1
Zp
I Nn 0
This is no current in the neutral wire.
How if the two Z p are NOT equal, and all the wires have impedances ?
This is a more practical scenario.
Ch6 Polyphsae Circuits
6.3 Single-phase Three-wire Systems
Example 9.1 (P242)
① Determine the power delivered to the
1
1150 V
rms
0
11500 V
rms
I1
3
I3
10
50
20
I2
100
j10
50, 100 and the 20 j10 Loads.
② Determine the power lost in the three
lines represented by 1 3 and 1
respectively.
③ Determine the transmission efficiency?
total power absorbed by the loads
η=
total power generated by the sources
Hints: observe a structure with regular meshes and know the impedances, we can
determine the currents I1, I2 and I3 in order to find out the power being lost
and delivered!
Ch6 Polyphsae Circuits
6.3 Single-phase Three-wire Systems
Apply KVL for the three meshes.
11500 V 1 I1 50 I1 I 2 3I1 I3 0
20 j10 I2 100 I2 I3 50I2 I1 0
11500 V 3 I3 I1 100I3 I 2 1 I3 0
Rearranging them in a matrix form as
50
3 I1 11500
54
50 170 j10 100 I 0
2
3
100
104 I 3 11500
Ch6 Polyphsae Circuits
6.3 Single-phase Three-wire Systems
It can be calculated:
I1 11.24 19.830 A rms
I1 I 2 2.02∠2.27o A rms
I 2 9.389 24.470 A rms
I3
I 2 1.08∠2.12 o A rms
I 3 10.37 21.80 A rms
I3
I1 0.947∠2.3o A rms
0
Hence, the average power delivered to each of the loads are:
2
P50 I1 I 2 50 206W
2
P100 I 3 I 2 100 117W Total loaded power 2086 W
2
P20 j10 I 2 20 1763W
Ch6 Polyphsae Circuits
6.3 Single-phase Three-wire Systems
Power lost in three wires are:
2
PbB I 3 1 108W
Total lost power 237 W
2
2
PnN I nN 3 I 3 I1 3 3W
PaA I1 1 126W
2
Transmission efficiencyη
Powerdeliveredto theload
100%
total power generated
Total power generated by the two voltage sources is:
Psources 11511.24cos19.830 11510.37cos21.800
1216W 1107W 2323W
Transmission efficiency 2086 W 100 % 89 .8%
2323 W
Ch6 Polyphsae Circuits
6.4 Three Phase Y Y connection
a
Van
n
b
A
B
Vbn
Balanced three-phase sources
(phasor voltages)
N
Van Vbn Vcn
Van Vbn Vcn 0
Voltage characteristics
Vcn
C
Ch6 Polyphsae Circuits
6.4 Three Phase Y Y connection
Positive phase sequence (abc) (clockwise rotation)
Vcn
Van Vp 00
Vbn Vp 1200
240
0
Vcn Vp 240
0
Vp
120
0
Van
Vbn
Negative phase sequence (cba) (Anti-clockwise rotation)
Van V p 0
Vbn
0
Vbn V p 120
1200
0
Vcn V p 2400
2400
Vcn
Van
Ch6 Polyphsae Circuits
6.4 Three Phase Y Y connection
Line-to-line voltages (take the abc sequence as an example)
Vab Van Vnb V p 00 V p 600 V p V p cos60 jVp sin 60
3
3
Vp j
V p 3V p 300
2
2
Vca
Vbc Vbn Vnc Vp 120 Vp 60
0
Vna
Vcn
0
1
3
1
3
Vp j
Vp Vp j
Vp 3V p 900
2
2
2
2
Vnb
Vnb
Vna
Van
Vca Vcn Vna V p 2400 V p 1800
1
3
Vp j
V p Vp 0 3V p 2100
2
2
Hence
Vab Vbc Vca 0
Vbn
Vnc
Vnc
Vbc
verifies KVL.
Vab
Ch6 Polyphsae Circuits
6.4 Three Phase Y Y connection
Vab 3Vp 300
Vbc 3Vp 900
Voltage types
magnitude
Phase voltages ( Vp )
Vp
Line-to-line voltages (
VL )
3V p
Vca 3V p 2100
Phasor difference
1200
1200
Ch6 Polyphsae Circuits
6.4 Three Phase Y Y connection
Current characteristics
I aA
I bB
a
b
B
A
Zp
Zp
n
N
c
I cC
ZP
C
Ch6 Polyphsae Circuits
6.4 Three Phase Y Y connection
Consider three impedances Z p are connected between each line and
the neutral line.
Vbn Van 1200
I bB
I aA 1200
Zp
Zp
V
I aA an
Zp
I cC
Hence
Vcn
Zp
V p 2400
Zp
I aA 2400
I aA + I bB + I cC = 0
When balanced impedances are applied to each of the three lines and
the neutral line carries no current.
Ch6 Polyphsae Circuits
6.4 Three Phase Y Y connection
Example 9.2 (P247)
Phase voltages:
Van 20000 Vrms , Vbn 200 120 0 Vrms , Vcn 200 240 0 Vrms
line-to-line voltage:
Vab 200 3300 Vrms , Vbc 200 3 900 Vrms , Vca 200 3 210 0 Vrms
Line currents:
Van 20000
0
I aA
2
60
Arms
Z p 100600
I bB 2 180 0 Arms
I cC 2 300 0 Arms
Power absorbed by the three loads
P 3 200 2 cos60o 600W
Ch6 Polyphsae Circuits
6.4 Three Phase Y Y connection
Example 9.2 (P247)
How about the instantaneous power?
van t 200 2 cost V
iaA t 2 2 cos t 60 A
0
Note: Van = 200V rms
PaA t van t iaA t 200 2 cost V 2 2 cos t 600 A
200 400cos 2t 600 W
Similarly , the instantaneous total power absorbed by the loads are :
Pt PA t PB t PC t
600 400cos2t 60 400cos2t 300 400cos2t 180W
600W
The total instantaneous power is NEVER ZERO.
Ch6 Polyphsae Circuits
6.4 Three Phase Y Y connection
•
Example 9.3 (P249)
A balanced three-phase system with a line voltage of 300Vrms is supplying a
balanced Y-connected load with 1200W at a leading power factor (PF) of 0.8.
Determine line cuurent IL and per-phase load impedance Zp.
The phase voltage is: Vp = 300/ 3 Vrms.
The per-phase power is: 1200W/3 = 400W.
300
Therefore 400 =
( I L ) × 0.8 , and IL = 2.89Arms
3
V
300 3
The phase impedance is: | Z P |= P =
= 60Ω
IL
2.89
~
IL
Vp 300 3 Vrms
Zp
A leading PF of 0.8 implies the current leads the voltage, and the impedance angle
is: -argcos(0.8) = -36.9o
and Zp = 60∠-36.9o Ω
Note: the apparent power of a Y-Y connected load is P = Van × IAN
(phase voltage × line current)
Ch6 Polyphsae Circuits
6.5 The Delta ( ) Connection
The neural line dose not exist. Balanced impedances are connected
between each pair of lines.
a
b
A
Zp
Zp
n
c
B
ZP
C
Ch6 Polyphsae Circuits
6.5 The Delta ( ) Connection
Voltage characteristics
Phase voltages
Vp Van Vbn Vcn
Line voltages
VL Vab Vbc Vca
VL 3Vp
﹠
Vab 3Vp 300
Current characteristics
Phase currents
I p I AB I BC ICA
Line currents
I L I aA I bB I cC 3I p
Ch6 Polyphsae Circuits
6.5 The Delta ( ) Connection
Y connections
Phase voltages
Vp
Line voltages
VL 3V p
Phase currents
Ip
Line currents
√
IL I p √
connections
Vp
VL 3V p √
Ip
I L 3I p
√
Ch6 Polyphsae Circuits
6.5 The Delta ( ) Connection
•
Example 9.5 (p251)
Determine the amplitude of line current in a three-phase system with a line voltage
of 300Vrms that supplies 1200W to a Δ-connected load at a lagging PF of 0.8.
The per-phase average power is: 1200W/3 = 400W
Therefore, 400W = VL ∙ IP ∙ 0.8 = 300V ∙ IP ∙ 0.8, and IP = 1.667Arms
The line current is: IL = 3 IP = 3 1.667A = 2.89Arms
Moreover, a lagging PF implies the voltage leads the current by argcos(0.8) = 36.9o
The impedance is: Z VP 300 36.9o 180∠36.9o
P
IP
1.667
Note: the apparent power of a Δ connected load is P = Vab × IAB
(line voltage × phase current)
Ch6 Polyphsae Circuits
6.6 Power measurement
P I V
Wattmeter
measured by
current coil
I
current coil
potential coil
E.g.
V
measured by
potential coil
Passive
Network
I 11.18153.4Arms
V 1000Vrms
P V I cosangV angI
10011.18 cos0 153.4 1000W
Ch6 Polyphsae Circuits
6.6 Power measurement
A
a
IaA
ZP
IAB
B
IBC
ZP
ZP
1
IbB
b
ICA
c
IcC
2
C
Validate the power meter reads the actual
power absorbed/delivered by the three
impedances.
Ch6 Polyphsae Circuits
6.6 Power measurement
P1 VAB I aA cosangVAB angI aA VL I L cos 300
VL I L cos 300
P2 VCB I cC cosangVCB angI cC VL I L cos 900 120
VL I L cos 300
3 1
tg
P1 cos 30
cos30 cos sin 30 sin
3 tg
2
2
P2 cos 300
cos300 cos sin 300 sin
3 1
3 tg
tg
P2 P1 2 2
P2 P1
tg 3
arctg 3
P2 P1
P2 P1
0
reactive (PF=0)
, tg
2
P1 P2
0
0
capacitive / inductive (0<PF<1)
, tg , tg
2
2
π
P1 P2 , 0, capacitive
2
P1 P2 , 0 , inductive
2
resistive (PF=1)
0 , tg 0
P1 P2
Ch6 Polyphsae Circuits
6.6 Power measurement
•
a
.
A 4
Example 9.7 (p256)
1
Vab 2300Vrms with positive phase sequence. b
(1) Find the reading of each wattmeter.
2
(2) The total power absorbed by the loads.
With positive phase sequence , we know :
Vab 2300Vrms
Vbc 230 120Vrms
c
Vca 230 120Vrms
Wattmeter 1 reads IaA and Vac :
V V 230 60Vrms
ac
.
B
j15
ca
230 30
V
3
an
IaA
8.554 105.1A
4 j15
4 j15
.
C
.
N
Ch6 Polyphsae Circuits
6.6 Power measurement
•
a
.
A 4
Example 9.7 (p256)
Wattmeter 1 reads :
P1 Vac IaA cosangVac angIaA
1
j15
b
.
B
230 8.554 cos 60 105.1 1389W
c
Wattmeter 2 reads IbB and Vbc :
230 150
V
3
bn
IaB
8.554134.9A
4 j15
4 j15
2
.
C
P2 Vbc IbB cosangVbc angIbB
230 8.554 cos 120 134.9 512.5W
Hence , P P1 P2 876.5W
Q: Please try to prove the two wattmeters read the power associated with the
three impedances.
.
N