Transcript Slide 1
911213.....56 slides http:\\aliasadipour.kmu.ac.ir 1 The End!!!!!!! 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 2 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 3 منابع کتابخانه شیمی عمومی مورتیمر کتب ومنابع شیمی سایت های اینترنتی www.asadipour.kmu.ac.ir 4 http:\\aliasadipour.kmu.ac.ir 911213.....56 slides Chemical Kinetics Thermodynamics – does a reaction take place? Kinetics – how fast does a reaction proceed? Reaction rate is the change in the concentration of a reactant or a product with time (M/s). A B D[A] rate = Dt D[A] = change in concentration of A over time period Dt D[B] rate = Dt D[B] = change in concentration of B over time period Dt Because [A] decreases with time, D[A] is negative. 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 5 A B time rate = - rate = D[A] Dt D[B] Dt 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 6 Reaction Rates Reaction rate = change in concentration of a reactant or product with time. Three “types” of rates initial rate average rate instantaneous rate 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 7 Br2 (aq) + HCOOH (aq) 2Br- (aq) + 2H+ (aq) + CO2 (g) slope of tangent average rate = - D[Br2] Dt =- slope of tangent slope of tangent [Br2]final – [Br2]initial tfinal - tinitial instantaneous rate = rate for specific instance in time 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 8 2NO22NO+O2 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 9 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 10 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 11 Concentrations & Rates 0.3 M HCl 6 M HCl Mg(s) + 2 HCl(aq) ---> MgCl2(aq) + H2(g) 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 12 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 13 Reaction Order What is the rate expression for aA + bB → cC + dD Rate = k[A]x[B]y where x=1 and y=2.5? Rate = k[A][B]2.5 What is the reaction order? First in A, 2.5 in B Overall reaction order? 2.5 +1 = 3.5 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 14 Interpreting Rate Laws Rate = k [A]m[B]n[C]p If m = 1, rxn. is 1st order in A Rate = k [A]1 If [A] doubles, then rate goes up by factor of __ If m = 2, rxn. is 2nd order in A. Rate = k [A]2 Doubling [A] increases rate by ________ If m = 0, rxn. is zero order. Rate = k [A]0 If [A] doubles, rate ________ 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 15 Deriving Rate Laws Derive rate law and k2for Rate of rxn = k [CH3CHO] ???? CH3CHO(g) → CH (g) + CO(g) Therefore, we say this reaction4 is _____ order. from experimental data for rate of Here the rate goes by 3_____ disappearance ofupCH CHO when initial conc. doubles. Expt. 1 2 3 4 [CH3CHO] (mol/L) 0.10 0.20 0.30 0.40 Disappear of CH3CHO (mol/L•sec) 0.020 0.081 0.182 0.318 Now determine the value of k. Use expt. #3 data— 1,2,3 or 4 R= k [CH3CHO]2 0.182 mol/L•s = k (0.30 mol/L)2 k = 2.0 (L / mol•s) Using k you can calc. rate at other values of [CH3CHO] at same T. 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 16 Expression of R &K A 3B(aq ) 2 H (aq ) X – A series of four experiments was run at different concentrations, and the initial rates of X formation were determined. – From the following data, obtain the reaction orders with respect to A, B, and H+. – Calculate the numerical value of the rate constant. 911213.....56 slides http:\\aliasadipour.kmu.ac.ir Presentation of Lecture Outlines, 14–17 Expression of R &K Exp. 1 Exp. 2 Exp. 3 Exp. 4 Initial Concentrations (mol/L) A B H+ Initial Rate [mol/(L.s)] 0.010 0.010 0.00050 1.15 x 10-6 0.020 0.010 0.00050 2.30 x 10-6 0.010 0.020 0.00050 2.30 x 10-6 0.010 0.010 0.00100 1.15 x 10-6 – Comparing Experiment 1 and Experiment 2, you see that when the – A concentration doubles (with other concentrations constant), – the rate doubles. – This implies a first-order dependence with respect to A. 911213.....56 slides http:\\aliasadipour.kmu.ac.ir Presentation of Lecture Outlines, 14–18 Expression of R &K Exp. 1 Exp. 2 Exp. 3 Exp. 4 Initial Concentrations (mol/L) A B H+ Initial Rate [mol/(L.s)] 0.010 0.010 0.00050 1.15 x 10-6 0.020 0.010 0.00050 2.30 x 10-6 0.010 0.020 0.00050 4.60 x 10-6 0.010 0.010 0.00100 1.15 x 10-6 – Comparing Experiment 1 and Experiment 3, you see that when the – B concentration doubles (with other concentrations constant), – the rate 4 times. – This implies a second-order dependence with respect to B. 911213.....56 slides http:\\aliasadipour.kmu.ac.ir Presentation of Lecture Outlines, 14–19 Expression of R &K Exp. 1 Exp. 2 Exp. 3 Exp. 4 Initial Concentrations (mol/L) A B H+ Initial Rate [mol/(L.s)] 0.010 0.010 0.00050 1.15 x 10-6 0.020 0.010 0.00050 2.30 x 10-6 0.010 0.020 0.00050 4.60 x 10-6 0.010 0.010 0.00100 1.15 x 10-6 – Comparing Experiment 1 and Experiment 4, you see that when – the H+ concentration doubles (with other concentrations constant), – the rate is the same. – This implies a zero-order dependence with respect to H+. 911213.....56 slides http:\\aliasadipour.kmu.ac.ir Presentation of Lecture Outlines, 14–20 Expression of R &K Exp. 1 Exp. 2 Exp. 3 Exp. 4 Initial Concentrations (mol/L) A B H+ Initial Rate [mol/(L.s)] 0.010 0.010 0.00050 1.15 x 10-6 0.020 0.010 0.00050 2.30 x 10-6 0.010 0.020 0.00050 4.60 x 10-6 0.010 0.010 0.00100 1.15 x 10-6 0 Rate k[ A][ B] [ H ] k[ A][ B] 2 911213.....56 slides http:\\aliasadipour.kmu.ac.ir Presentation of Lecture Outlines, 14–21 2 Expression of R &K Exp. 1 Exp. 2 Exp. 3 Exp. 4 Initial Concentrations (mol/L) A B H+ Initial Rate [mol/(L.s)] 0.010 0.010 0.00050 1.15 x 10-6 0.020 0.010 0.00050 2.30 x 10-6 0.010 0.020 0.00050 4.60 x 10-6 0.010 0.010 0.00100 1.15 x 10-6 – You can now calculate the rate constant by substituting values from – any of the experiments. Using Experiment 1 you obtain: Rate k[ A][ B] 4 2 1.15 10 6 mol mol mol 2 k (0.010 ) (0.010 ) Ls L L k 1.2 10 L /(mol s ) 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 2 2 Presentation of Lecture Outlines, 14–22 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 23 Zero-Order Reactions A k= product rate DA rate = DT =RATE= M/s [A]0 rate = k [A]0 = k - D[A] Dt =k DA KDT 0 [A] = [A]0 - kt [A] is the concentration of A at any time t [A]0 is the concentration of A at time t=0 ZERO ORDER REACTION t½ = t when [A] = [A]0/2 12 10 2k 8 [A] t½ = [A]0 6 4 2 0 0 5 10 15 TIME 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 24 First-Order Reactions A k= rate [A] product M/s = M rate = - = 1/s or s-1 t½ = t when [A] = [A]0/2 0.693 t½ = k rate = k [A] Dt - D[A] Dt = k [A] [A] is the concentration of A at any time t [A]0 is the concentration of A at time t=0 [A] = [A]0exp(-kt) 911213.....56 slides D[A] http:\\aliasadipour.kmu.ac.ir ln[A] = ln[A]0 - kt 25 Second-Order Reactions A rate k= [A]2 1 [A] rate = - product = M/s = M2 1 [A]0 D[A] rate = k [A]2 Dt - = 1/M•s D[A] = k [A]2 Dt [A] is the concentration of A at any time t [A]0 is the concentration of A at time t=0 + kt SECOND ORDER REACTION SECOND ORDER REACTION 0.6 t½ = t when [A] = [A]0/2 0.5 10 1 1/[A] k[A]0 0.4 8 [A] t½ = 12 6 4 0.2 2 0.1 0 0 911213.....56 slides 0.3 1 2 TIME http:\\aliasadipour.kmu.ac.ir 3 4 5 0 0 1 2 3 TIME 4 5 13.3 26 First step in evaluating rate data is to graphically interpret the order of rxn Zeroth order: rate does not change with lower concentration First, second orders: Rate changes as a function of concentration 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 27 Summary of the Kinetics of Zero-Order, First-Order and Second-Order Reactions Order 0 Rate Law rate = k 1 rate = k [A] 2 [A]2 911213.....56 slides rate = k Concentration-Time Equation [A] = [A]0 - kt ln[A] = ln[A]0 - kt 1 [A] http:\\aliasadipour.kmu.ac.ir = 1 [A]0 + kt Half-Life t½ = t½ = t½ = [A]0 2k ln2 k 1 k[A]0 28 Collision Theory O3(g) + NO(g) → O2(g) + NO2(g) 10 31 Collisin/Lit.S Reactions require (A) geometry (B) Activation energy 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 29 Three possible collision orientations-a & b produce reactions, c does not. 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 30 Collision Theory TEMPERATURE 10 c0 T 100-300% RATE 25 c0 T 35 c0 2% COLLISIN EFFECTIVE COLLISIONS 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 31 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 32 ① with sufficient energy The colliding molecules must have a total kinetic energy equal to or greater than the activation energy, Ea. Ea is the minimum energy of collision required for two molecules to initiate a chemical reaction. It can be thought of as the hill in below. Regardless of whether the elevation of the ground on the other side is lower than the original position, there must be enough energy imparted to the golf ball to get it over the hill. 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 33 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 34 The Collision Theory of Chemical Kinetics Activation Energy (Ea)- the minimum amount of energy required to initiate a chemical reaction. Activated Complex (Transition State)- a temporary species formed by the reactant molecules as a result of the collision before they form the product. 911213.....56 slides Exothermic Reaction http:\\aliasadipour.kmu.ac.ir Endothermic Reaction 35 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 36 Temperature Dependence of the Rate Constant (Arrhenius equation) k = A • exp( -Ea/RT ) 2.45 2.4 2.35 K 2.3 2.25 Ea is the activation energy (J/mol) 2.2 2.15 R is the gas constant (8.314 J/K•mol) 2.1 2.05 0 500 1000 1500 TEMPERATURE T is the absolute temperature A is the frequency factor 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 37 Arrhenius Equation • k = A • exp( -Ea/RT ) • Can be arranged in the form of a 0.9 straight line 0.88 0.86 0.84 Ln K ln k = ln A-Ea/RT=(-Ea/R)(1/T) + ln A 0.82 0.8 0.78 0.76 Plot ln k vs. 1/T 0 0.0005 0.001 0.0015 0.002 0.0025 1/T slope = -Ea/R 911213.....56 slides 0.74 http:\\aliasadipour.kmu.ac.ir 38 •k = A • 300400C0 Rate20000 Times 400500C0 Rate400 Times e( -Ea/RT ) ln k = ln A-Ea/RT=(-Ea/R)(1/T) + ln A Ea=60KJ/mol 300310C0 Rate2 Times Ea=260KJ/mol 300310C0 Rate25 Times If T increases Ea/RT decreases REACTION SPEEDS UP 911213.....56 slides k increases http:\\aliasadipour.kmu.ac.ir -Ea/RT increases e-Ea/RT increases 39 K in different T Ln(K2/K1)=-Ea/R(1/T2-1/T1) Log(K2/K1)=-Ea/2.303R(1/T2-1/T1) Log(K2/K1) =Ea/2.303R(T2-T1)/T1T2 Log(K2/K1) =ΔH/2.303R(T2-T1)/T1T2 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 40 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 41 Mechanisms Rate = k [H2O2] [I-] Most rxns. involve a sequence of elementary steps. 2 I- + H2O2 + 2 H+ ---> I2 + 2 H2O Proposed Mechanism Rate = k [H2O2] [I-] Step 1 — slow HOOH + I- --> HOI + OHStep 2 — fast HOI + I- --> I2 + OHStep 3 — fast 2 OH- + 2 H+ --> 2 H2O ------------------------------------------------------------------ 2 I- + H2O2 + 2 H+ ---> I2 + 2 H2O Rate can be no faster than slow step RATE DETERMINING STEP,( rds.) The species HOI and OH- are intermediates. 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 42 Mechanisms NOTE 1. Rate law comes from experiment 2. Order and stoichiometric coefficients not necessarily the same! 3. Rate law reflects all chemistry including the slowest step in multistep reaction. 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 43 Mechanisms 2NO+F22NOF 1=NO+F2NOF+F Rate limiting step(RDS) 2=NO+F NOF 911213.....56 slides http:\\aliasadipour.kmu.ac.ir R=K[NO][F2] R1=K1[NO][F2] R=R1 R2=K2[NO][F] 44 SN1 OH- + (CH3)3CBr(CH3)3COH + BrR=K[(CH3)3CBr] 1)(CH3)3CBr(CH3)3C+ +BrR1=K1[(CH3)3CBr ] 2) (CH3)3C+ +OH- (CH3)3COH R2=K2[(CH3)3C+] +[OH-] 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 45 SN2 OH- +CH3Br CH3OH + Br- R=K[CH3Br][OH-] 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 46 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 47 Rate Laws andMechanisms Proposed NO2 + CO →NO(g) + CO2(g) Rate = k[NO2]2 Experimental Two possible mechanisms Two steps Two steps is rational mechanism Single step 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 48 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 49 A catalyst is a substance that increases the rate of a chemical reaction without itself being consumed. k = A • exp( -Ea/RT ) Ea k uncatalyzed 911213.....56 slides ratecatalyzed > rateuncatalyzed catalyzed http:\\aliasadipour.kmu.ac.ir 50 For the decomposition of hydrogen peroxide: Br - A catalyst(Br-) speeds up a reaction by lowering the activation e It does this by providing a different mechanism by which the react can occur. The energy profiles for both the catalyzed and uncataly reactions of decomposition of hydrogen peroxide are shown in Fig 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 51 1)Homogeneous Catalysis N2O (g) N2 (g) + O2 (g) 1) N2O (g) N2 (g) + O (g) 2) O (g) + N2O (g) N2(g)+ O2 (g) Ea=240KJ/mol Cl2 Catal. ------------------------------------------------------Cl2(g)2Cl(g) N2O(g)+Cl(g)N2(g)+ClO(g) 2ClOCl2(g)+O2(g) Ea=140KJ/mol 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 52 2)Heterogeneous Catalysis C2H4 + H2 C2H6 with a metal catalyst a. reactants b. adsorption c. migration/reaction d. desorption 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 53 Enzyme Catalysis 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 13.6 54 Catalytic Converters CO + Unburned Hydrocarbons + O2 2NO + 2NO2 911213.....56 slides http:\\aliasadipour.kmu.ac.ir catalytic converter catalytic converter CO2 + H2O 2N2 + 3O2 13.6 55 The End!!!!!!! 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 56