Transcript Document
Vibrational (Infrared) Spectroscopy
vibrational modes
← C≣≣O →
equilibrium bond distance re can be changed by
applying energy
potential well for
modified (Morse) potential
classical vibrator
well for a diatomic molecule
1. quantized – only certain energy levels may exist
E = hω(u + 1/2)
u: vibrational quantum number
w: vibrational frequency
1
k
ω = ―― ――
2p
m
m1 × m2
m = ―――――
m1 + m2
2. too close – repulsion between nuclei and electrons1
too far apart – dissociation
ex.
ex.
u(HCl) = 2990 cm-1
u(DCl) = 2145 cm-1
u(NO)
bond order
NO+
2273 cm-1
3
NO
1880 cm-1
2.5
NO1365 cm-1
2
NO2886 cm-1
1.5
HCl
DCl
number of vibrational modes
a molecule consists of N atoms, there are 3N
degrees of freedom
translation rotation vibration
nonlinear
3
3
3N – 6
linear
3
2
3N – 5
type of vibrational modes
stretching mode u
bending mode d
IR active absorption
Raman active absorption
2
frequencies for some commonly encountered groups, fragments,
and linkages in inorganic and organic molecules
3
ex. W(CO)6
compound
[Ti(CO)6]2[V(CO)6]Cr(CO)6
[Mn(CO)6]+
Mn(CO)5Br
u(CO) (cm-1)
1740
1860
2000
2095
stretching modes of CO and IR frequencies
(a) terminal (b) doubly bridging (c) triply bridging
ex.
4
some ligands capable of forming linkage isomers
IR spectrum for nujol
721
1377
1462
2925
2855
salt plates
NaCl 625 cm-1
KBr 400 cm-1
CsI 200 cm-1
5
symmetry of normal vibrations
ex. CO32-
6 vibrational modes
C3(u3a) = -1/2u3a + 1/2 u3b
C3(u3b) = -3/2u3a - 1/2 u3b
determine the symmetry type of normal modes
E
c = 12
6
C3
c=0
C2
c = -2
c (sh) = 4
c (S3) = -2
c (sv) = 2
??
7
G = A1’ + A2’ + 3E’ + 2A2” + E”
3 translatory modes: E’, A2”
3 rotational modes: A2’, E”
genuine vibrational modes: Gg = A1’ +2E’ + A2”
IR active: E’, A2” (3 bands)
Raman active: A1’, E’ (3 bands)
particular internal coordinates to normal modes
C—O bonds
E C3
C 2 s h S3 s v
G
3
0
1
3
0
1
GCO = A1’ + E’
in-plane stretching
GOCO = A1’ + E’
in-plane bending
A2”
out-of-plane bending
ex. determine the number of IR active CO stretching
bands for the following metal carbonyl
compounds : M(CO)6 M(CO)5L cis-M(CO)4L2
trans-M(CO)4L2 fac-M(CO)3L3 mer-M(CO)3L3
8
M(CO)5 M(CO)4L M(CO)3L2 M(CO)4
(i) trans-M(CO)4L2
D4h E C4 C2 C2’ C2” i S4 sh sv sd
L
4 0 0 2
0 0 0 4 2 0
OC
OC
CO
CO
L
==> A1g + B1g + Eu
IR-active: Eu
(ii) cis-M(CO)4L2
CO
C2v
OC
OC
L
L
CO
L
OC
E C2 s
s’
4
0
2
2
==> 2A1 + B1 + B2
IR-active: 2A1, B1, B2
(iii) mer-M(CO)3L3
CO
C2v E
C2 s s’
L
3
1
1
2
L
==> 2A1 + B1
OC
IR-active: 2A1, B1
(iv) M(CO)5
E C3 C 2 s h
5
2
1 3
==> 2A1’ + A2” + E’
IR-active: A2”, E’
D3h
S3
0
sv
3
9
(v) M(CO)4L
L
E C3
sv
4
1
2
==> 2A1 + E
IR-active: 2A1, E
D3v
E C3 s v s v‘
4
0
2
2
==> 2A1 + B1 + B2
IR-active: 2A1, B1, B2
D2v
L
(vi) M(CO)3L2
L
D3h
L
E C3
3
0
==> A1‘ + E’
IR-active: E’
L
Cs
L
(vii) M(CO)4
C2
1
sh
3
S3
0
sv
1
E sh
3 1
==> 2A‘ + A”
IR-active: 2A’, A”
Td
E C3
4
1
==> A1 + T2
IR-active: T2
C2
0
S3 s d
0 2
10
number of CO stretching bands in IR spetcrum
for metal carbonyl compounds
11
number of IR bands of some common geometric
arrangements
12
calculation of force constants
for diatomic molecule AB
harmonic oscillator
f • m-1 – l = 0
for polyatomic molecule
Wilson’s method
“The F and G matrix method”
|FG – El| = 0
F: matrix of force constant (potential energy)
G: matrix of masses and spatial relationship of
atoms (kinetic energy)
E: unit matrix
e.g. H2O
Gg = 2A1 + B1
2 O-H distance Dd1, Dd2 A1 + B1
∠HOH Dθ
A1
using projection operator to obtain complete set
of symmetry coordinates for vibrations
A1 :
S1 = Dθ
S2 = 1/√2(Dd1 + Dd2)
B1 :
S3 = 1/√2(Dd1 - Dd2)
F matrix 2V = Sfik si sk
si, sk: change in internal coordinates
for
Dd1
Dd2
Dθ
Dd1
fd
fdd
fdθ
Dd2
fdd
fd
fdθ
Dθ
fdθ
fdθ
fθ
13
2V = fd(Dd1)2 + fd(Dd2)2 + fθ(Dθ)2 + 2 fdd(Dd1 Dd2)
+ 2 fdθ(Dd1 Dθ) + 2 fdθ(Dd2 Dθ)
= [Dd1 Dd2 Dθ] fd fdd fdθ Dd1
fdd fd
fdθ Dd2
fdθ fdθ fθ Dθ
= s’f s
relationship between the internal coordinates and
the symmetry coordinates
S=Us
U matrix
Dq
0
0
1
Dd1
Dd1 + Dd2 = 1/√2 1/√2 0
Dd2
Dd1 - Dd2
1/√2 -1/√2 0
Dq
S=Us
s = U’ S s’ = (U’ S)’ = S’U
s’fs = S’FS
(S’U)f(U’S) = S’FS
S’(UfU’)S = S’FS ==>
0
0
1
F = 1/√2 1/√2 0
1/√2 -1/√2 0
F = UfU’
fd fdd fdθ 0 1/√2 1/√2
fdd fd fdθ 0 1/√2 -1/√2
fdθ fdθ fθ 1
0
0
fθ
√2 fdθ
= √2 fdθ fd + fdd
0
0
0
0
fd - fdd
14
G matrix G = UgU’
0
G=
0
1
gd
1/√2 1/√2 0
1/√2 -1/√2 0
g33
√2 g13
0
=
gdd gdθ
0 1/√2 1/√2
gdd gd gdθ
gdθ gdθ gθ 1
0 1/√2 -1/√2
0
0
√2 g13
g11 + g12
0
0
0
g11 - g12
g11 = mH + mO
g12 = mO cosθ
g13 = -(mO/r) sinθ
g33 = 2(mH + mO - mO cosθ)/r2
m : reciprocal of the mass
2(mH + mO - mO cosθ)/r2
for H2O
G=
A1:
fθ
0
mH + mO (1+ cosθ)
0
0
mH + mO (1 - cosθ)
-(√2mO/r) sinθ
0
G =
-(√2mO/r) sinθ
θ= 104.3o31’
r = 0.9580 Å
2.332
-0.0893
0
-0.0893
1.0390
0
0
0
1.0702
√2 fdθ
√2 fdθ fd + fdd
2.332
-0.0893
-0.0893 1.0390
B1: 1.0702(fd - fdd) = l
l
–
0
0
l
=0
15
elements of the g matrix
mi: reciprocal mass of the ith atom
rij: reciprocal of the distance
between ith and jth
16
Raman spectroscopy
light of energy less than that required to
promote a molecule into an excited electronic
state is absorbed by a molecule,
a virtual excited state is created
virtual state is very short lifetime, the majority
of the light is re-emitted over 360oC, this is
called Rayleigh scattering
C. V. Raman found that the energy of a small
proportion of re-emitted light differs from the
incident radiation by energy gaps that
correspond to some of the vibrational modes
Stokes lines
anti-Stokes line
17
schematic representation of Raman spectrometer
selection rules for vibrational transitions
• a fundamental will be infrared active if the
normal mode which is excited belongs to the
same representation as any one or several of
the Cartesian coordinates
• a fundamental will be Raman active if the
normal mode involved belongs to the same
representation as one or more of the
components of the polarizability tensor of the
molecule
the exclusion rule – in centrosymmetric molecules,
no Raman-active vibration is also IR-active and
no IR-active vibration is also Raman-active
only fundamentals of modes belonging to g
representations can be Raman active and
only fundamentals of modes belonging to u
18
representations can be IR active
ex. Na2MoO4 dissolved in HCl exhibits Raman
peaks at 964, 925, 392, 311, 246, 219 cm-1
925, 311 cm-1 being polarized
what can be deduced from the spectrum?
no n(Mo—H) and n(O—H) bands
only M—Cl and M=O likely exist
964, 925 cm-1
Mo=O stretching bands
392 cm-1
Mo=O bending mode
311, 246, 219 cm-1
Mo—Cl stretching modes
possible product:
19
normal vibrational modes for common structures
20
21
22
23
24
25
26