Transcript States
Lecture 11
First-order Circuits (1)
Hung-yi Lee
Dynamic Circuits
Capacitor,
Inductor
(Chapter 5)
Time
Domain
(Chapter 9)
Frequency
Domain
(Chapter 6,7)
Abstract
S-Domain
(Chapter 11,13)
Textbook
• First-Order Circuits
• Chapter 5.3, 9.1
First-Order Circuits
• Containing only one capacitor or inductor
The networks excluding capacitor or inductor only
contains sources and resistors.
Can always be simplified by Thevenin or Norton
Theorem
First-Order Circuits
RC:
i sc
RL:
i sc
First Order Circuits
voc t , isc t (this lecture)
voc and isc should be dynamic
…
t
t0
…
t
t0
…
t1
i sc
t2
t
…
…
t0
t
Unit Step Function
Perspective
• Differential Equation
• Superposition
• State
Perspective 1:
Differential Equation
Zero-Input Response - RC
v Vou t t0
…
t0
t
Zero-Input Response - RC
Find vc(t) and ic(t)
t t0
Capacitor is open circuit
ic t 0
vc t Vo
Zero-Input Response - RC
Find vc(t) and ic(t)
t t0
Capacitor is open circuit
ic t 0
vc t 0
Zero-Input Response - RC
Find vc(t) and ic(t)
t t0
?
t t0
t t0
?
t t0
Zero-Input Response - RC
t t0
vC (t0 ) V0
vC (t0 ) V0
ic(t0) is unknown
Voltage on the
capacitor should
be continuous
Zero-Input Response - RC
t t0
vC (t0 ) V0
vC (t0 ) V0
ic(t0) is unknown
dvC (t )
RC
vC (t ) 0
dt
t
Assume vC (t ) Ae
t
t
RCAe Ae 0
dvC (t )
iC (t ) C
dt
RC 1 0
1
RC
Zero-Input Response - RC
vC (t ) Ae
Ae
Ae
1
t0
RC
1
RC
vC (t0 ) V0
t
1
t
RC
A V0 e
V0
vC (t ) V0 e
1
1
t0 t
RC
RC
e
V0 e
vC (t0 ) V0
1
t0
RC
1
t t 0
RC
1
t t 0
RC
dvC (t )
de
iC (t ) C
CVo
dt
dt
Vo RC t t0
e
R
1
Zero-Input Response - RC
vC (t ) V0 e
1
t t 0
RC
Vo
iC (t ) e
R
1
t t 0
RC
Zero-Input Response - RC
vC (t ) V0 e
…
RC
t
t0
vC (t ) V0 e
Vo
dvC (t )
Vo
e
dt
vC (t )
Vo
Vo
Vo
1
t t 0
RC
1
t t 0
1
t t 0
dvC (t0 )
Vo
dt
Vo
Zero-Input Response - RL
i I ou t t0
i
…
t0
t
Zero-Input Response - RL
iL (t ) I 0 e
I0
R
t t 0
L
vC (t ) RI 0 e
vL (t )
iL (t )
- RI 0
R
t t 0
L
Zero-Input Response
…
t0
vC (t ) V0 e
1
t t 0
RC
R
t t 0
L
iL (t ) I 0 e
RC
L
R
y (t ) Y0 e
Voltage of C,
Current of L
t -t 0
Voltage,
Current
How fast?
t
Step Response - RC
v Vou t t0
…
t0
t
t t0
Step Response - RC
• Solved by differential equation
t t0
vc t 0
t t0
vc t Vo
t t0
Ric t vc t Vo
0
vc t
0
vt Vou t t0
0
vc t
0
dvc t
RC
vc t Vo
dt
Step Response - RC
dvc t
v t 0
RC
v t V
dt
c
vc t v N t vF t
o
c
0
vN(t) is general solution
vF(t) is special solution
dvc t
vc t 0
vN(t) is the solution of RC
dt
vN (t ) Ae
dvc t
vc t Vo
vF(t) is the solution of RC
dt
vF t Vo
t
RC
Step Response - RC
dvc t
v t 0
RC
v t V
c
dt
vc t v N t vF t
vc t Ae
t
RC
c
o
Vo
vc t V0 1 e
0
vN (t ) Ae
Ae
t0
RC
1
t t 0
RC
t
RC
vF t Vo
Vo 0
A Vo e
t0
RC
…
Step Response
t
t0
1
t t 0
vc t V0 1 e RC
R
t t 0
iL t I 0 1 e L
RC
L
R
t -t 0
y (t ) Y0 1 e
Voltage of C,
Current of L
Voltage,
Current
How fast?
Step Response
t -t 0
y (t ) Y0 1 e
Y0
Y0
…
t0
t
Step Response
…
t
t0
t -t 0
y (t ) Y0 1 e
Y0
Y0
Rise time
Y0
10% time
90% time
Step Response + Initial Condition
t t0
0
vc t
0
V
vc t
0
x
Step Response - RC
dvc t
RC
v t V v t V
c
dt
vc t v N t vF t
vc t Ae
Ae
t0
RC
t
RC
c
o
vN (t ) Ae
Vo
x
t
RC
vF t Vo
vc t Vx V0 e
Vo Vx
A Vx Vo e
0
t0
RC
1
t t 0
RC
V0
Perspective 2:
Superposition
Step Response
• Solved by Superposition
vt Vou t t0
vC (t ) V0 e
1
t t 0
RC
vt Vou t t0
vC (t ) ?
Step Response
…
t0
t
v 2 t
=
…
…
t0
v1 t Vo
Vou t t0
t
-
Suppress v1, find vc2(t)
Suppress v2, find vc1(t)
…
t0
t
vc t vc1 t vc 2 t
Step Response
vt
Vou t t0
vC (t ) V0 e
vC 2 (t ) V0 e
v 2 t
Vou t t0
1
t t 0
1
t t 0
vC1 (t ) V0
vC (t ) vC1 (t ) vC 2 (t )
v1 t Vo
1
t t 0
V0 1 e
Pulse Response
vt
Vo
dvc t
RC
vc t vt
dt
Solved by Superposition
Pulse Response
=
0
t0
1
t
vC1 (t ) V 1 e t 0
0
vt
Vo
vC1 (t )
…
0
D
-
0
tD
t D
vC 2 (t ) V 1 e t D
0
vC 2 (t )
Vo
Vo
0
…
D
Pulse Response
vC (t ) vC1 (t ) vC 2 (t )
0
tD
0
t0
t D
1
vC1 (t ) V 1 e t t 0 vC 2 (t ) V 1 e t D
0
0
vC (t )
D
V0
V0 1 e
D t
V0 e 1e
Pulse Response
If D
vC (t )
V0
e x 1 x (If x is small)
D
V0
V0 1 e
D
D
V0 e
t
D t
V0 e 1e
Step Response + Initial Condition
V
vc t
vc t Vx V0 e
1
t t 0
RC
0
V0
Violate Superposition?
x
Step Response + Initial Condition
vc t0 Vx
The initial condition is
automatically fulfilled.
Vx
Do not have to
consider the initial
condition anymore
Step Response + Initial Condition
Vx
Vx
Zero-Input Response!
Step Response
(without initial condition)!
1
t t 0
RC
v
t
V
1
e
c2
0
vc1 t Vx e
1
1
t t 0
t t 0
vc t vc1 t vc 2 t Vx e RC
V0 1 e RC
1
t t 0
RC
Step Response + Initial Condition
Differential
Equation
Superposition
vc t
vc t
Vx V0 e
General
solution
1
t t 0
RC
V0
Special
solution
The initial condition is
considered in the general
solution term.
Vx e
1
t t 0
RC
Zero-input
Response
V0 1 e
1
t t 0
RC
Step Response
The initial condition is
automatically fulfilled.
Perspective 3:
State
State
• The capacitor voltages and inductor currents
constitute the state variables of any circuit. (P410)
If the circuit does not have any
capacitor or inductor
The currents or voltages at time t
do not depend on their values not
at t.
Why?
v(t ) Rit
State
• The capacitor voltages and inductor currents
constitute the state variables of any circuit. (P410)
With capacitor or inductor
V0
vt
0
t t0
t t0
You can not explain the current
or voltage at present unless
considering the past.
State
• The capacitor voltages and inductor currents
constitute the state variables of any circuit. (P410)
1 t
dv(t )
v(t ) i d
i (t ) C
C
dt
1 t
1 t
vt vt0 i d vt1 i d ……
C t0
C t1
If we know the
voltage before at t0
We do not care about
the current before t0
Capacitor voltages are States
State
• The capacitor voltages and inductor currents
constitute the state variables of any circuit. (P410)
1 t
vt vt0 i d
C t0
State at t0
Source after t0
vt vstate t vinput t
vc t0 Vx
State
• The capacitor voltages and inductor currents
constitute the state variables of any circuit. (P410)
vc (t ) vstate t vinput t
The response after t0
vc t Vx e
1
t t 0
RC
From state at t0
(Ignore input)
1
t t 0
V0 1 e RC
From Input after t0
(Ignore state)
Response
y(t): voltage of capacitor or current of inductor
y(t) = general solution + special solution
=
=
= natural response + forced response
= state response (zero input)
+ input response (zero state)
Zero-Input Response
…
t0
t
vc (t ) vstate t vinput t
Considering the circuit from t0:
Ignore everything
before t0
State: vc(t0)=V0
Lead to vstate t
No input after t0
vinput t 0
Zero-Input Response
vc (t ) vstate t vinput t
vinput t 0
State: vc(t0)=V0
vstate (t ) V0 e
vc t vstate (t ) V0 e
1
t t 0
1
t t 0
Zero-Input Response
v Vou t t0
…
t0
t
vc (t ) vstate t vinput t
Considering the circuit from t0-D:
State: vc(t0-D)=V0
Input after t0-D
t0 D
t0
t
Zero-Input Response
vc (t ) vstate t vinput t
State: vc(t0-D)=V0
vstate (t ) V0 e
Input after t0-D
vinput (t )
1
t t 0 D
t
t0 D
t0
t0 D
t0
1
t t D
D
t t 0 D
V0 e 1e
V0 1 e
0
Example 9.4
t0
0 t 1
t 1
6k
12V
4k
12V
Example 9.4
t0
v0 0
v 0 0
v 0 0
Example 9.4
v 0 0 v 1 9.73
0 t 1
State response:
v0 0
No state response
Input response: voc 12V
vt V0 1 e
t t0
t
12V
0
.
6
121 e
6k
Example 9.4
v 0 0 v 1 9.73
0 t 1
6k
12V
State response is zero
Example 9.4
v 0 0 v 1 9.73
t 1
State response:
vt Vx e
t t0
4k
Input response:
t t
0
vt V0 1 e
12V
Example 9.4
v 0 0 v 1 9.73
t 1
State response:
vt 9.73e
4k
t 1
0 .4
Input response:
t 1
vt 121 e 0.4
12 21.73e
t 1
0. 4
12V
Example 9.4
t
0
.
6
121 e
12 21.73e
dvt vt
it 100F
dt 24k
t 1
0. 4
Application:
Touchscreen
Resistive Touchscreen
電阻式觸控螢幕
http://www.analog.com/library/analogdialogue/archives/44-02/touch_screen.html
Capacitive Touchscreen
電容式觸控螢幕
Before Touching
Finger is Touching
http://www.eettaiwan.com/ART_8800583600_480702_TA_bc13e6c4.HTM
Homework
• 9.14
• 9.16
Homework - Stability
• The first-order circuit shown below is at steady
state before the switch closes at t=0. This circuit
contains a dependent source and so may be
unstable. Find the capacitor voltage, v(t), for t>0.
Homework - Stability
• The gain of the dependent source below is B. What
restrictions must be placed on the gain to ensure
that the circuit is stable? Design this circuit to have
a time constant of +20ms.
Thank you!
Homework
• 9.14
• 9.16
t
2D
0t D
vL t 10e
tD
vL t 3.93e
vC D 8.65
vC 2D 1.17
vC 3D 8.81
t D
2D
Stability
• The first-order circuit shown below is at steady
state before the switch closes at t=0. This circuit
contains a dependent source and so may be
unstable. Find the capacitor voltage, v(t), for t>0.
0.2m
0.1m
vt 24 12e
0.4m 0.1m
1V
t
20
Stability
• The gain of the dependent source below is B. What
restrictions must be placed on the gain to ensure
that the circuit is stable? Design this circuit to have
a time constant of +20ms.
B 3/ 2
B 1
Acknowledgement
• 感謝 莊佾霖(b02)
• 指出投影片中 Equation 的錯誤