Method 2 for Zero State
Download
Report
Transcript Method 2 for Zero State
Lecture 14
Second-order Circuits (2)
Hung-yi Lee
Second-Order Circuits
Solving by differential equation
Second-order Circuits
• Steps for solving by differential equation
• 1. List the differential equation (Chapter 9.3)
• 2. Find natural response (Chapter 9.3)
• There are some unknown variables in the natural
response.
• 3. Find forced response (Chapter 9.4)
• 4. Find initial conditions (Chapter 9.4)
• 5. Complete response = natural response + forced
response (Chapter 9.4)
• Find the unknown variables in the natural response
by the initial conditions
Review Step 1:
List Differential Equations
v C
R
L
v C
1
LC
vC
1
LC
vs
i L
1
RC
i L
1
LC
iL
1
LC
is
Review Step 2:
Natural Response
2
2
2
y N t 2 y N t 0 y N t 0 1 , 2 0
Real
2
2
0
λ1, λ2 is
1 2
Overdamped
1 2
2
2
0
Critical damped
0
Underdamped
0
Undamped
Complex
2
2
0
Fix ω0, decrease α
2
2
1 , 2 0
The position of the two roots λ1 and λ2.
α=0
Undamped
v C
Example 9.11
i L
R
v C
L
R
L
1
vC
LC
i L
1
LC
1
LC
iL
L 0 . 1H, R 5 , C
vs
1
L
v s
1
640
30 V
v s (t )
0 V
i L t ?
Natural response iN(t):
i N
R
L
i N
iN A e
t
1
LC
2
t
t0
t 0
i N 50 i N 6400 i N 0
iN 0
Ae
t0
50 Ae
t
6400 Ae
t
0
50 6400 0
2
1 , 2
50
50 4 6400
2
2
25 76 j
F
v C
Example 9.11
i L
R
v C
L
R
L
1
vC
LC
i L
1
LC
1
LC
iL
L 0 . 1H, R 5 , C
vs
1
L
v s
1
F
640
30 V
v s (t )
0 V
i L t ?
Natural response iN(t):
1 , 2 25 76 j
Forced response iF(t)=0
Complete response iL(t):
i N t e
t
a cos d t b sin d t
t0
t 0
a cos 76 t b sin 76 t
i L t i N t e
1 , 2 j d
y N t e
25 t
t0
25 t
a cos 76 t b sin 76 t
Two unknown variables,
so two initial conditions.
Example 9.11
L 0 . 1H, R 5 , C
1
F
640
30 V
v s (t )
0 V
i L t ?
Initial condition
t 0
short
vC
30V
0
0
0
iL 0
open
iC
vL
0
30
0
30
t0
t0
t 0
0
v 0 30
C v 0 0
L i 0 30
iL 0
C
C
L
Example 9.11
i L t e
25 t
0
a cos 76 t b sin 76 t
iL 0
30
L i L 0
i L t be
i L 0 a 0
i L t b 25 e
25 t
sin 76 t 76 e
i L 0 b 76 300
i L t 3 . 95 2 e
25 t
sin 76 t
300
25 t
25 t
i L 0
sin 76 t
cos 76 t
b 3 . 95
Example 9.11
i L t 3 . 95 2 e
Textbook:
i L ( t ) 3 . 95 e
25 t
25 t
sin 76 t
cos( 76 t 90 )
v C
Example 9.12
R
1
v C
L
LC
1
vC
LC
vs
v C 10 R v C 6400 v C 6400 30
L 0 . 1H, R ? , C
1
F
640
0 V t 0
v s (t )
t0
30 V
v C t ?
Natural response vN(t):
v N 10 R v N 6400 v N 0
Ae
2
t
1 , 2
t
10 R Ae
10 R
vN Ae
6400 Ae
10 R 2
t
t 0
t
0
10 R 6400 0
2
4 6400
2
Forced response vF(t):
v F 10 R v F 6400 v F 6400 30
v F Y ss 30
Example 9.12
1
L 0 . 1H, R ? , C
F
640
0 V t 0
v s (t )
t0
30 V
v C t ?
Initial condition:
short
vC
0V
0
0 0
iL 0
open
0
iC 0
t 0
0
v 0 0
iL 0
C
0
C v C 0
Example 9.12
Initial condition:
0
0
vC 0
C v C 0
v C t v N t v F t
v N t A 1 e
1 t
A 2e
2t
1 , 2
10 R
10 R 2
4 6400
2
v F t 30
Different R gives different response
R 0
R 16
R
R 0?
0 R 16
R 16
Initial condition:
Example 9.12
0
0
vC 0
C v C 0
v C t v N t v F t
v N t A 1 e
1 t
A 2e
2t
1 , 2
10 R
1 , 2
10 R
R 34
10 34 2
4 6400
20 , 320
2
v C ( t ) 30 A1 e
v C ( t ) 20 A1 e
4 6400
2
v F t 30
Overdamped: R 16
10 R 2
20 t
20 t
A2 e
320 t
320 A 2 e
320 t
A1 32 , A 2 2
A1 A 2 30
20 A1 320 A 2 0
Initial condition:
Example 9.12
0
0
vC 0
C v C 0
v C t v N t v F t
v N t A 1 e
1 t
A 2e
2t
1 , 2
10 R
10 R 2
4 6400
2
v F t 30
Critical damped: R 16
1 , 2 80
v N ( t ) A1 e
v C ( t ) 30 A1 e
80 t
A 2 te
80 t
30 30 e
80 t
A 2 te
80 t
v C ( t ) 30 80 e
80 t
A 2 te
80 t
v C ( 0 ) 30 A1 0
A2 e
v C ( 0 ) 30 80 A 2 0
80 t
80 t
80 te
80 t
A1 30
A 2 2400
Initial condition:
Example 9.12
0
0
vC 0
C v C 0
v C t v N t v F t
v N t A 1 e
1 t
A 2e
2t
1 , 2
10 R 2
10 R
2
v F t 30
Underdamped:
v N t e
25 t
v C t 30 e
R 16
a cos 76 t b sin
25 t
R 5
1 , 2 25 76 j
v C 0 30 a 0
76 t
a cos 76 t b sin
76 t
a 30
v C 0 25 a 76 b 0
a cos 76 t b sin 76 t
25 t
a 76 sin 76 t b 76 cos 76 t
e
v c t 25 e
25 t
4 6400
b 9 . 87
Example 9.12
v C t 30 e
v C t 30
25 t
a cos 76 t b sin
a b e
2
2
25 t
31.58
76 t
a
cos 76 t
2
2
a
b
cos x
v C ( t ) 30 31 . 58 e
a 30
25 t
cos( 76 t x )
b 9 . 87
sin 76 t
2
2
a b
b
sin x
x 161 . 8
Example 9.12
v C ( t ) 30 32 e
v C ( t ) 30 30 e
v C ( t ) 30 31 . 58 e
25 t
20 t
80 t
2e
320 t
2400 te
cos( 76 t 161 . 8 )
80 t
Non-constant Input
• Find vc(t) for t > 0 when vC(0) = 1 and iL(0) = 0
vs
1
iL
ic
1
12
v c
12
v s v L ic i L
vc
12 v c 7 v c v c 6 v s
v L 0 . 5 i L i c v c
v s i c v c i c 2 i c v c dt
i L 2 i c v c dt
1
1
1
vs
v c v c
v c 2
vc
12
12
12
v
c
Non-constant Input
12 v c 7 v c v c 6 v s
v s 5 cos t
Natural response vN(t):
12 v N 7 v N v N 0
v N t A1 e
Forced response vF(t):
3t
A2 e
1 , 2 3 , 4
4 t
12 v F 7 v F v F 6 v s 6 5 sin t
v F K 1 sin t K 2 cos t
12 K 1 sin t K 2 cos t 7 K 1 cos t K 2 sin t K 1 sin t K 2 cos t
30 sin t
K 1 7 K 2 12 K 1 30
K 2 7 K 1 12 K 2 0
11 K 1 7 K 2 30
7 K 1 11 K 2 0
K1
33
17
K2
21
17
Non-constant Input
Initial Condition:
vs
1
iL
12
vc
v C 0 1
i L 0 0
iC 0 2
iC 0 C v C 0 2
v C 0 24
Non-constant Input
v C t v N t v F t
v N t A1 e
3t
A2 e
4 t
v F K 1 sin t K 2 cos t
v C t A1 e
3t
A2 e
4t
33
sin t
17
3t
4t
v C t 3 A1 e 4 A 2 e
A1 A 2
21
21
v C 0 1
K1
cos t
17
33
cos t
17
A1 25
17
33
17
sin t
17
1
3 A1 4 A 2
21
24
A2
429
17
33
17
v C 0 24
K2
21
17
Second-Order Circuits
Zero Input + Zero State
& Superposition
Review: Zero Input + Zero State
y(t): voltage of capacitor or current of inductor
y(t) = general solution + special solution
=
=
= natural response + forced response
Set sources to be zero
y(t) = state response (zero input)
+ input response (zero state)
Set state vc, iL to be zero
= state response (zero input)
+ input 1 response + input 2 response ……
If input = input 1 + input 2 + ……
v C
Example 1
1
L
H, R
8
v s ( t ) 15
State response (Zero input):
R
v state
L
v state
1
LC
v state 0
10 16 0
2
2, 8
L
5
v C
1
LC
, C
4
1
vC
1
LC
F
2
0 t 30
3V
vC 0
R
(pulse)
0A
iL 0
Find vC(t) for t>0
10 v state 16 v state 0
v state
v state t A1 e
2 t
A2 e
8t
vs
v C
Example 1
L
1
H, R
8
v state t A1 e
2 t
A2 e
8t
0
2 A1 8 A 2 0
0
C v state
vC
LC
, C
1
F
2
(pulse)
0A
iL 0
v state t 4 e
A1 A 2 3
1
Find vC(t) for t>0
3V
v state 0
5
0 t 30
3V
State response (Zero input):
L
v C
4
v s ( t ) 15
vC 0
R
2 t
e
8t
A1 4 , A 2 1
1
LC
vs
Example 1
1
L
H, R
8
0
vC 0
0
v C 0
15
(pulse)
0A
iL 0
(set state to be zero)
…
=
v s t
F
Find vC(t) for t>0
15
30
1
2
0 t 30
3V
Input response (Zero State):
, C
4
v s ( t ) 15
vC 0
5
0
30
v s1 ( t )
15
0
…
30
v s 2 (t )
v C
Example 1
15
…
0
0
v s 2 ( t ) 30
LC
2 t
2 t
vC
0
vC 0
15 20 e
15
L
v C
1
1
LC
vs
1 10 v input
1 16 v input 1 16 15
v input
v s 1 ( t ) 30
v input 1 t 15 A1 e
R
A2 e
5e
…
8t
8t
0
v C 0
15 A1 A 2 0
A1 20
2 A1 8 A 2 0
A2 5
t 0
0 t 30
v input
2
v input
2 t 30
8 t 30
t
15
20
e
5
e
2
t 30
Example 1
Input response (Zero State):
15
0 t 30
15
…
=
v s t
0
30
15 20 e
2t
-
30
0
v s1 ( t )
5e
8t
15 20 e
…
30
v s 2 (t )
v input 1 t
v input t v input 1 t
15
v input
2t
5e
8t
2
t 0
Example 1
Input response (Zero State):
15
t 30
15
…
=
v s t
0
30
5 e
8t
2 t
e
e
2 t 30
8 t 30
v input 1 t
15 20 e
5e
…
30
v s 2 (t )
t
2
0
v s1 ( t )
v input t v input 1 t v input
20 e
30
15
8t
2t
v input
2
t
15 20 e
5e
2 t 30
8 t 30
v input t
Example 1
15 20 e
2t
v input t
5e
8t
5 e
Input response
(Zero State)
0 t 30
t 30
v state t 4 e
8t
2t
e
e
2 t 30
8 t 30
t 30
0 t 30
State response
(Zero input)
20 e
2 t
e
8t
v C t v state t v input t 15 24 e
v C t v state t v input t 20 e
2 t
2 t 30
6e
5
8t
8 t 30
Example 1 – Differential Equation
1
L
H, R
8
5
4
v s ( t ) 15
F
2
0 t 30
3V
vC 0
, C
1
(pulse)
0A
iL 0
Find vC(t) for t>0
15
v s t
t0
0
3V
v C 0
t 30
v C 30 15 V
i L 30
15 V
v C 30
vC 0
30
Assume 30s is
large enough
t 30
0
0
v C 30
Example 1 – Differential Equation
t 0
v s t 15
3V
v 0 0
vC 0
C
t 30
v s t 0
t
15 V
v 30 0
v C 30
C
v C 10 v C 16 v C
v C 10 v C 16 v C
16 15
0
0 t 30 :
v C t 15 A1 e
2 t
A2 e
8t
A1 24
A2 6
Example 1 – Differential Equation
t 0
v s t 15
v C 30
2 30
v C 30 2 A1 e
C
C
v C 30 A1 e
t
v C t A1 e
v s t 0
15 V
v 30 0
3V
v 0 0
vC 0
t 30
v C 10 v C 16 v C
v C 10 v C 16 v C
16 15
0
2 t
A2 e
A2 e
2 30
v C t 20 e
8t
8 30
8 A2 e
15
8 30
0
2 t 30
5e
8 t 30
A1 20 e , A 2 5 e
60
240
v C
Example 2
L
1
H, R
8
5
1
LC
, C
1
vC
F
2
t0
3V
L
v C
4
v s (t ) t
vC 0
R
0A
iL 0
Find vC(t) for t>0
State response (Zero input):
Changing the input will not
change the state (zero input)
response.
v state t 4 e
2 t
e
8t
1
CL
vs
v C
Example 2
L
1
H, R
8
5
1
LC
, C
0A
iL 0
Input response (Zero state):
0
0
v input
0
Input
(set state to be zero)
What is the response?
F
2
Find vC(t) for t>0
v input 0
1
vC
t0
3V
L
v C
4
v s (t ) t
vC 0
R
4 methods
1
CL
vs
v C
Example 2 –
Method 1 for Zero State
R
L
v C
0
10 v input
16 v input 16 t
v input
v input 0
1
vC
LC
1
CL
vs
0
v input
0
Natural Response:
v N 10 v N 16 v N 0
v N t A1 e
2 t
A2 e
8t
Forced Response:
v F 10 v F 16 v F 16 t
v F t K 1 t K 2
v F t t
5
8
10 K 1 16 K 1t K 2 16 t
v input t v N t v F t t
5
8
A1 e
2t
K 1 1, K 2
A2 e
8t
5
8
Example 2 –
Method 1 for Zero State
v input t t
5
8
A1 e
t 1 2 A1 e
v input
v input 0
2 t
5
8
2t
A2 e
8 A2 e
0
8t
v input 0
0
v input
0
8t
A1
A1 A 2 0
0 1 2 A1 8 A 2 0
v input
v input t t
5
8
2
3
2
3
A2
e
2t
1
24
e
8t
1
24
Example 2 –
Method 2 for Zero State
Find the response of
each small pulse
Then sum them together
Example 2 –
Method 2 for Zero State
1
1
=
0
v t 1
4
e
2t
4
3
3
e
1
e
v t 1
8t
2t
4
3
e
2t
1 e
2t
2 t
1
3
e
8t
1
e
8t
3
8t
8
3
4
e
2 t t
3
1
3
1 e
e
8 t
2t
e
…
t
0
3
v t
v t
-
…
t
1
8t
t
e
8 t t
Example 2 –
Method 2 for Zero State
1
t
v t1 t
8
3
e
2 t t1
e
8 t t1
t
v 0 t
8
3
e
2t
e
8t
t
Consider a point a
value of the pulse at t1 is
v t1 a
a
t1
t1 t
8
3
e
2 a t1
e
8 a t1
t
Example 2 –
Method 2 for Zero State
Consider a point a
value of the pulse at t1 is
v input t
ta
t0
8
3
8
3
t e
2 a t
e
te
t0
8a t
3
e
2 a t1
2t
dt
8
te dt
3
ta
e
8 a
te
t0
e
8 a t1
t
dt
at
ta
2a
e
v t1 a
8
8t
dt
e
at
a
2
at
1
Example 2 –
Method 2 for Zero State
v input a
8
ta
e
2a
3
te dt
2t
t0
8
te dt
at
e
at
a
2
at
1
ta
e
8 a
3
te dt
8t
t0
2t
8t
e
8
e
2a
8 a
2 t 1 e 8 t 1
e
3
4
3
64
ta
8
t0
2a
8a
e
1
8
e
1
2a
8 a
2 a 1 1 e 8 a 1 1
e
3
4
64
4
3
64
8
8 1
1 2a 8 1
1 8 a
8 a 1 e
2 a 1 e
3 4
4
64
3 64
a
5
8
2
3
e
2a
-
1
24
e
8 a
We can always replace
“a” with “t”.
Example 2 –
Method 3 for Zero State
t
…
0
4 2t 1 8t
v t 1 e e t
3
3
…
The value at time point a
…
…
…
…
v input a
ta
4 2 a t
1 e
3
t0
t
1 8a t
e
dt t
3
a
Example 2 –
Method 3 for Zero State
v input a
ta
1
1dt
t0
ta
1dt
a
4
4
e
2a
3
a
3
4
e
1 e
2a
e
8a t
dt
2 a t
ta
dt
3
ta
e
2a
e dt
2t
t0
1
2
1
24
t0
3
t0
2
1
3
ta
t0
e
2 a t
3
t0
ta
4
e
2a
1
1
1
1
8a t
ta
e
8 a
3
e
dt
3
e dt
8t
t0
8 a
3
1 e a
8 a
e
1
8
5
8
e
8a
2
3
1
e
2a
-
1
24
e
8 a
Example 2 –
Method 4 for Zero State
Source Input:
x slope ( t ) t
Input (Zero State) Response
y slope ( t ) ?
Source Input:
1
…
0
x step ( t ) u ( t )
Input (Zero State) Response
y step t 1
4
3
e
2t
1
3
e
8t
Example 2 –
Method 4 for Zero State
y slope ( t ) ?
x slope ( t ) t
y step t 1
x step ( t ) u ( t )
4
e
2t
3
1
e
8t
3
t 10 y slope
t 16 y slope t 16 x slope t
y slope
t 10 y step
t 16 y step t 16 x step t
y step
t 10 y slope
t 16 y slope
t 16 x slope t 16 x step t
y slope
t y step t 1
y slope
y slope t t
2
3
e
2t
4
3
1
24
e
2t
1
e
8t
3
e
8t
A
A
5
8
Example 2
Method 2:
v input a
ta
t0
Method 3:
v input a
t e
3
ta
t0
Method 4:
8
1
4
3
2 a t
e
e
2 a t
8a t
1
e
dt
8a t
dt
3
t 1
v input
4
3
e
2t
1
3
e
8t
Example 2
v C t v state t v input t
v s t t
v C t t
5
8
10
3
e
2t
23
e
8t
24
L
1
H, R
8
v s (t ) t
5
4
t0
, C
1
2
F
R
v C
v C
1
, C
1
vC
Example 2 –
L
LC
Checked by Differential Equation
L
1
H, R
8
4
v s (t ) t
v N t A1 e
v F t t
v C t t
A1
2 t
A2 e
8t
8
10
3
iL 0
3
L i 0 3
A1 e
, A2
A2 e
23
24
2
0A
vC 0
2t
F
Find vC(t) for t>0
5
8
5
CL
t0
3V
vC 0
5
1
8t
L
5
8
0
C v 0 0
iL 0
C
A1 A 2 3
1 2 A1 8 A 2 0
vs
Example 3
L
1
H, R
8
0
v s t t
30 V
3V
vC 0
5
, C
4
1
2
t0
0 t 30
t 30
0A
iL 0
Find vC(t) for t>0
How to solve it?
I will show how to solve the problem by
Method 1: Differential equation
Method 2: Integrating Step Responses
Method 3: Differentiate the sources
F
Example 3
– Method 1: Differential Equation
0
v s t t
30 V
3V
vC 0
0 t 30
v C t t
v C 30
5
10
8
e
2t
3
23
e
v C t 1
3
0A
iL 0
24
C
8
e
t 30
8t
2t
0 t 30
Find vC(t) for t>0
v 30 30 5 10 e
20
t0
23
3
e
8t
60
3
23
e
240
24
v C 30
v 30 1 20 e
C
3
60
23
3
e
240
Example 3
– Method 1: Differential Equation
v C 30
30
5
8
10
e
60
23
3
e
240
v C 30
24
1 20 e
60
23
3
3
v C t 2 A1 e
8 A2 e
e
240
t 30
v C t 30 A1 e
2 t
v C 30 30 A1 e
A2 e
60
A1
v C t 30
2
8t
A2 e
e
60
3
10
3
3
e
2t
v C 30 2 A1 e
240
10
2 t
,A2
23
24
e
8t
1
e
240
24
2
3
60
8t
8 A2 e
23
24
e
2 t 30
1
24
e
8 t 30
240
Example 3
– Method 2: Integrating Step Responses
t
…
…
0
4 2t 1 8t
v t 1 e e t
3
3
The value at time point a
t
If a > 30
v input a
t 30
…
…
…
…
4 2 a t 1 8a t
1 e
e
dt
3
3
t0
t
a
a
If a < 30
Integrating from 0 to a
If a > 30
Integrating from 0 to 30
Example 3
– Method 2: Integrating Step Responses
v input a
t 30
4
1 3 e
2 a t
1dt
t 30
4
t 30
e
3
t0
1dt
30
4
e
4
v input t 30
e
3
dt
e dt
2t
t0
1
2t
e
t 30
e
3
2a
2
e
2 a t
t 30
2a
3
2
v state t 4 e
dt
1
t0
3
t0
e
8a t
2 t
3
t0
t 30
1
60
1
24
1
e
8t
t 30
e
8 a
3
3
2
3
dt
t0
1
1
8a t
e dt
8t
t0
e
8 a
1
8
e
e
2 t 30
240
1
1
24
e
8 t 30
e
8t
Example 3
– Method 3: Differentiate the sources
1
30
0
v s t t
30 V
t0
0 t 30
t 30
Response: v input t ?
0
v s t 1
0
t0
0 t 30
t 30
Response: v pulse t
t v pulse t
v input
Example 3
– Method 3: Differentiate the sources
t v pulse t
v input
1
t0
0 t 30
t 30
Response: v pulse t
4
v pulse t 1
2
v input t t
30
0
v s t 1
0
t 30
v input 0
2
e
2t
3
v input t t
3
1
e
8t
3
1
3
e
2t
8t
e
A
24
1
A
A0
8
24
2
e
2t
3
v input 30 30
1
e
8t
24
2
3
e
60
5
5
8
1
24
e
240
5
8
Example 3
2
v input 30 30
e
60
1
3
e
240
24
5
8
– Method 3: Differentiate the sources
t v pulse t
v input
1
t0
0 t 30
t 30
Response: v pulse t
4
v pulse t
v input t
30
0
v s t 1
0
0 t 30
2
e
3
2t
3
e
2t
1 e
60
1 e
1
60
e
1
e
8t
3
8t
24
v input t 30
2
3
e
2 t 30
e
240
A 30
2t
3
1
24
240
1 e A
v input 30 ...... ......
2
1 e
1
24
e
8 t 30
e
8t
Announcement
• 11/12 (三) 第二次小考
• Ch5. Dynamic Circuit (5.3)
• Ch9. Transient response (9.1, 9.3, 9.4)
• 助教時間:週一到週五 PM6:30~7:30
Homework
• 9.58
• 9.60
Homework
• Find v(t) for t>0 in the following circuit. Assume
that v(0+)=4V and i(0+)=2A.
Homework
• Determine v(t) for t>0 in the following circuit
Thank You!
Homework
• 9.58
v C t 12 25 e
7 t
cos 24 t 16 . 3
• 9.60
i L t 6 8 e
5t
20 te
5t
Homework
• Find v(t) for t>0 in the following circuit. Assume
that v(0+)=4V and i(0+)=2A.
Homework
• Determine v(t) for t>0 in the following circuit
v C t 6 . 75 e
4 t
0 . 75 e
36 t
16
Appendix
Higher order?
• All higher order circuits (3rd, 4th, etc) have the same
types of responses as seen in 1st-order and 2ndorder circuits
Acknowledgement
• 感謝不願具名的同學
• 指出投影片中 Equation 的錯誤
• 感謝 吳東運(b02)
• 指出投影片中 Equation 的錯誤
• 感謝 林裕洲 (b02)
• 發現課程網站的投影片無法開啟