Transcript ERL Science
ERL & Coherent X-ray Applications Qun Shen Cornell High Energy Synchrotron Source (CHESS) Cornell University Talk Outline Introduction to x-ray coherence Coherent x-ray applications Desired ERL properties Options and improvements Conclusions Shen 3/31/03 Source Emittance and Brilliance x x’ Phase-space Emittance: EM wave: x’ sx’ E(r, t) = E0 ei(k·r-wt) ex = sx sx’ sx Integrated total flux Fn y’ sy’ ey = sy sy’ x sy E sE et = st sE / E y st t Brilliance: photon flux density in phase-space Average B = Shen 3/31/03 Fn (2p)2 ex ·ey ^= Peak B Fn (2p)3 ex ·ey·et Spatial (Transverse) Coherence 2s 2s Dl = 2s = l/2 2s' => 2 2s ~ l s' => X-ray beam is spatially coherent if phase-space area 2ps’s < l/2 Diffraction limited source: 2ps's = l/2 or e = l/4p Almost diffraction limited: 2ps's ~ l or e ~ l/2p Shen 3/31/03 Temporal (Longitudinal) Coherence l l+Dl Coherence length: lc = l2/Dl Coherence time: Dtc = lc/c lc = l2/Dl Temporally coherent source: pulse length FWHM t Dtc For l = 1 Å, Dl/l = 10-4 : lc = 1 mm, Dtc = 1 mm / 3x108 m/s = 3.3 fs uncertainty: t ·Dn 1 t ·DE h Degeneracy Parameter dD X-ray optics can modify Dl/l, but extinction length (~100mm) limits to Dl/l = 10-6 => Dtc= 330 fs = Number of photons in coherent volume ERL with st = 100 fs pulses coupled with 10 meV x-ray monochromator could mean temporal coherence at 10 keV. = Number of photons within single quantum mode Shen 3/31/03 Transverse Coherence from Undulator d L = l/2d Example: APS, L =2.4m, l =1.5Å 2.35 s r2' +s ' 2 sr' = 13.1 mrad s r' dy = 2.35x21mm, sy' = 6.9 mrad = 1.5 mrad, = 2.35x14.8 mrad => pc(vertical) = 4.3% dx = 2.35x350mm, sx' = 23.1 mrad = 0.091 mrad, = 2.35x26.6 mrad => pc(horizontal) = 0.15% Shen 3/31/03 2L A portion, / in each direction, of undulator radiation is spatially coherent within central cone Coherent fraction pc: depends only on total emittances => pc (overall) = 0.006% ERL: pc ~ 20% (45% in x or y) l pc Fc ( l /2 ) 2 B l2 Fn Fn ( 4p ) 2 e x e y ERL Spatial Coherence Diffraction limited @ 8keV (0.123Å) ESRF emittance (4nm x 0.01nm) ERL emittance (0.015nm=0.15Å) Diffraction limited source: 2ps's = l/2 or e = l/4p Almost diffraction limited: 2ps's ~ l or e ~ l/2p Phase II ERL: diffraction-limited source E < 6.6 keV almost diffraction-limited to 13 keV Shen 3/31/03 X-ray Coherence Workshop Program http://www.chess.cornell.edu/Meetings Friday, 22 August, 2003 8:30 Qun Shen (CHESS) Welcome 8:35 Sol Gruner (Cornell) Energy recovery linac source properties 8:55 Jerry Hastings (SLAC) XFEL source properties 9:15 Bruno Lengeler (Aachen) Tutorial on X-ray coherence 10:05 Coffee Break 10:30 Mark Sutton (McGill) X-ray photon correlation spectroscopy 8:30 Chris Jacobsen (SUNY-SB) Overview on coherent x-ray microscopy 11:00 Gerhard Gruebel (ESRF) Coherent SAXS 9:00 Keith Nugent (Melbourne) Phase imaging and phase retrieval 11:30 Jeroen Goedkoop (WZI) Magnetic speckle 9:30 Peter Cloetens (ESRF) 3D phase tomography Discussion on coherent scattering I: time correlation 10:00 12:00 Saturday, 23 August, 2003 10:15 Coffee Break 10:35 Enzo Di Fabrizio (Eletra) Wavefront shaping & lithography 11:05 Anatoly Snigirev (ESRF) Fourier transform holography Makina Yabashi (SPring8) Two-photon interferometry 12:15 Lunch 14:00 Ian Robinson (UIUC) 14:30 John Spence (ASU) 15:00 Coffee Break 15:20 Tetsuya Ishikawa (SPring8) 15:50 Christian David (PSI) Coherence preserving reflecting and crystal optics Diffractive optics and shearing interferometer 14:00 16:20 David Paterson (APS) X-ray coherence measurements Discussion on coherent optics 16:50 Crytallography on nanocrystallites 11:35 Ptychography and diffractive imaging: How it 12:05 works, with electrons and x-rays 12:20 Discussion on holography and interferometry Lunch David Sayre (SUNY-SB) Crystallography applied to noncrystalline materials 14:30 John Miao (SSRL, SLAC) Imaging with single molecule diffraction 15:00 Malcolm Howells (LBNL) Holography by phase retrieval 15:30 Shen 3/31/03 Discussion on phase contrast microscopy Discussion on coherent scattering II: structure determination X-ray Microscopy ESRF ID21: TXM 3-6 keV ESRF ID21: SXM 2-10 keV & < 2keV transmission fluorescence XPEEM ERL hi-coherence Two types: full field & scanning All types of materials are studied, from biological to magnetic Increasing number of SR imaging microscopes worldwide due to availability of => lens-like optics: zone plates, KB mirrors, CRLs => high-brilliance & high-energy synchrotron sources Shen 3/31/03 Issues in Hard X-ray Microscopy Phase contrast is x104 higher than absorption contrast for protein in water @ 8keV Focusing optics Only recently has Fresnel zone-plate (FZP) achieved <100nm resolution at 8keV (Yun, 1999) Dose reduced to level comparable to using water-window in soft x-ray region High coherence sources: Kirz (1995): 0.05mm protein in 10mm thick ice l2/(exey). Coherence fraction ~ => Requires 100x smaller emittance product for 1keV => 10 keV phase contrast 104 102 Refraction index: n = 1 - d - ib Shen 3/31/03 108 absorption contrast 106 Absorption vs. phase contrast absorption contrast: mz = 4pbz/l ~ l3 phase contrast: f(z) = 2pdz/l ~ l 1010 Dose (Gr) ERL would offer 102-103x better emittance product than present-day hard x-ray sources => Better coherence @10 keV than @1 keV at ALS C94H139N24O31S z 103 104 X-ray Energy (eV) In general, phase contrast requires: => coherent hard x-ray beams Phase Imaging & Tomography l Cloetens et al. (1999): ESRF, ID19, 18 keV Polystyrene foam 0.7x0.5x1mm3 1.4T wiggler, B~7x1014 ph/s/mr2/mm2/0.1% @100mA 4x700 images at 25 sec/image A form of Gabor in-line holography Coherence over 1st Fresnel zone (lR)1/2 Image reconstruction (phase retrieval) Spatial resolution limited by pixel size • With ERL: it would be possible to reduce the exposure times by orders of magnitude. • It offers great potential for flash imaging studies of biological specimens, at ID beam lines. Shen 3/31/03 Far-Field Diffraction Microscopy Diffraction microscopy is analogous to crystallography, but for noncrystalline materials Coherent diffraction from noncrystalline specimen: => continuous Fourier transform Spatial resolution: essentially no limit. (only limited by Dl/l and weak signals at large angles) Coherence requirement: coherent illumination of sample Coherent X-rays Key development: oversampling phasing method coherent flux!! Miao et al. (1999) >>> soft x-rays, reconstruction to 75 nm Shen 3/31/03 Diffraction Microscopy recent results Miao et al. PRL (2002) l=2Å reconstructed image: to d~7nm resolution Gold: 2.5mm x 2mm x 0.1mm SPring-8 BL29XU: standard undulator 140 periods lu=3.2 cm B=2x1019 ph/s/mr2/mm2/0.1% @100mA For Au, exposure time 50 min, d~7nm but: for Si, (ZSi/ZAu)2~1/32 => 26 hrs ! for C, (Zc/ZAu)2~1/173 => 6 days !! Shen 3/31/03 ERL high-coherence option: B=5x1022 ph/s/mr2/mm2/0.1% @10mA Exposure time for Si & d~7nm: 0.6 min. for C & d~7nm: 3.5 min. => could achieve higher resolution, limited only by radiation damage Imaging Whole Escherichia Coli Bacteria Using Single Particle X-ray Diffraction Jianwei Miao*†, Keith O. Hodgson*‡, Tetsuya Ishikawa§, Carolyn A. Larabell¶?, Mark A. LeGros**, and Yoshinori Nishino§ Miao et al., Proc. Nat. Acad. Sci. (2003) E. Coli bacteria ~ 0.5 mm by 2 mm SPring-8, l = 2 Å, pinhole 20 mm Total dose to specimen ~ 8x106 Gray Diffraction image to ~30nm resolution Shen 3/31/03 X-ray Photon Correlation Spectroscopy Dierker (2000), ERL Workshop Shen 3/31/03 X-ray Holography with Reference Wave Leitenberger & Snigirev (2001) Wilhein et al. (2001). Howells et al. (2001); Szoke (2001). Illumination of two objects, one as reference, e.g. pin-hole arrays • X-ray holography is exciting but not ready for applications • ERL is an ideal source for further research in this area Shen 3/31/03 Coherent X-ray Patterning & Lithography SHAPING X-RAYS BY DIFFRACTIVE CODED NANO-OPTICS (invited talk X-ray Coherence 2003) Maskless pattern Enzo Di Fabrizio TASC-NNL-INFM (National Institute for the Physics of Matter) Elettra Synchrotron Light Source DOE: diffractive optics element Lithography X-ray CVD Coherent X-rays Shen 3/31/03 Desired ERL Properties X-ray photon correlation spectroscopy Phase-contrast imaging & microscopy Coherent far-field diffraction Coherent crystallography X-ray holography Coherent x-ray lithography full transverse coherence high coherent flux / coh. fraction high Dl/l for high resolution small beam (some cases) large coherent area (some cases) CW operation: long pulses okay Basic Requirement: low transverse emittances D1 D2 X-ray optical slope error d << sx/D1 ~ 4mm/40m ~ 0.1mrad Shen 3/31/03 long undulators (large Nu) low machine energy spread coherence preserving x-ray optics Coherent Flux (photons/s/0.1%) Phase II ERL Coherent Flux 10 15 10 14 LCLS SASE ERL 25m 0.015nm 10mA APS 4.8m 10 13 10 12 10 11 10 10 Coherent fraction ~100x greater than 3rd SR sources Sp8 25m ESRF U35 Sp8 5m 10 Peak coherent flux (coherent flux per pulse) ~1000x greater than 3rd SR sources APS 2.4m ??? 9 3 4 5 6 7 8 910 20 Photon Energy (keV) Shen 3/31/03 Time-averaged coherent flux comparable to LCLS XFEL 0.15nm 100mA 30 40 50 CHESS Tech Memo 01-002: 3/8/01 http://erl.chess.cornell.edu/papers Assuming high duty-cycle ERL ERL APS APS ESRF Spring8 Spring8 LCLS operations hi-flux hi-coh. und. A upgrade U35 5m 25m spont. Machine design Energy EG (GeV) 5.3 5.3 7 7 6 8 8 Insertion device DC experiments Pulsed expts. 15 -6 72· 10 72· 10 -6 25 25 0.063 0.063 Current I (mA) 100 10 100 300 200 100 100 Charge q (nC/bunch) 0.077 0.008 14 14 0.85 0.29 0.29 1 1 1 1 ex (nm-rad) 0.15 0.015 8 3.5 4 6 6 0.05 0.05 0.02 0.02 ey (nm-rad) 0.15 0.015 0.08 0.0035 0.01 0.003 0.003 0.05 0.05 0.02 0.02 Bunch fwhm t (ps) 0.3 0.3 73 73 35 36 36 0.23 0.23 0.188 0.090 120 120 56575 56575 # of bunches f (Hz) 1.3· 109 1.3· 109 7.3· 106 22· 106 2.3· 108 3.4· 108 3.4· 108 Undulator L (m) 25 25 2.4 4.8 5 4.5 25 100 100 30 87 Period lu (cm) 1.7 1.7 3.3 3.3 3.5 2.4 3.2 3 3 3.81 5 # of period Nu 1470 1470 72 145 142 187 781 3300 3300 787 1740 Ave. flux Fn (p/s/0.1%) 1.5· 10161.5· 10157.0· 10144.2· 10151.3· 10152.4· 10159.0· 10153.3· 10102.4· 10146.4· 1012 4· 1017 Ave. brilliance B 22 22 19 21 20 20 21 17 22 19 25 (p/s/0.1%/mm2/mr2) 1.3· 10 5.2· 10 1.5· 10 1.5· 10 3.1· 10 5.0· 10 2.2· 10 1.6· 10 4.2· 10 3.6· 10 8· 10 Coh flux Fc (p/s/0.1%) 8.1· 10133.1· 10140.9· 10119.0· 10121.8· 10123.0· 10121.3· 1013 9.0· 108 2.4· 10141.4· 1011 4· 1017 Coh. fraction pc (%) Photons / bunch Peak brilliance (p/s/0.1%/mm2/mr2) 0.52 20 0.013 0.22 0.14 0.13 0.14 2.7 100 2.1 100 1.2· 107 1.2· 106 9.6· 107 1.9· 108 5.7· 106 7.1· 106 2.7· 107 2.8· 108 2· 1012 1.1· 108 7· 1012 3.0· 10251.2· 10262.5· 10228.3· 10233.3· 10223.6· 10221.6· 10234.8· 10271.2· 10333.4· 1027 7· 1033 Peak flux (p/s/0.1%) 3.9· 10193.9· 10181.3· 10182.6· 10181.6· 10171.9· 10177.4· 10171.2· 10217.2· 10246.0· 1020 3· 1025 Pk coh. flux (p/s/0.1%) 2.1· 10177.9· 10171.7· 10145.6· 10152.2· 10142.5· 10141.1· 10152.7· 10197.2· 10241.4· 1019 3· 1025 Peak degen. par. dD Shen 3/31/03 15 LCLS TESLA TESLA SASE spont. SASE 95 368 0.078 2.6 0.103 0.113 0.49 1.3· 104 3.3· 109 4.7· 103 8· 109 Desired Changes to Memo Performance numbers for micro-beam undulator Separate ultra-fast mode: less frequent fat bunch q Inclusion of effects of machine energy spread sE transverse exey scale with q 1.0 E1[keV] Relative Flux Gain 0.8 Relative Gain in Undulator Flux 22.35s E DE1 1 E1 N0 0.4 Decrease due to Energy Spread sE 0.2 0 1 2 3 Undulator Length Nu / N0 Shen 3/31/03 (1 + K 2 / 2) lu [cm ] DEG DE1 2 E1 EG 0.6 0.0 0.95 EG2 [GeV ] 4 5 DE 1 E Nu Phase II ERL Properties Type of experiments Machine energy Charge per bunch Repetition rate Machine current Horizontal emittance Vertical emittance Rms bunch length Energy spread Limit on number of periods Diffraction-limited to Undulator length Undulator period Number of periods Effective number of periods Horizontal beta Vertical Averagebeta flux Deflection Averageparameter brilliance Magnetic Average flux density @field 1:1 Peak flux Fundamental energy Peak brilliance Fundamental wavelength PhotonsParameter per pulse Coherent flux Parameter Total source size x Total source divergence x Total source size y Total source divergence y Shen 3/31/03 E (GeV) q (nC) f (MHz) I (mA) e x (nm-rad) e y (nm-rad) st (ps) sE /E N0 Ed (keV) L (m) lu (cm) Nu Neff b x (m) b ny (m) F (p/s/0.1%) Kn (std units) B B (T) (p/s/0.1%/mm2) F Ep1 (p/s/0.1%) (keV) B (std units) l1p (A) n p (p/0.1%) K2/4/(1+K2/2) F Qcn (p/s/0.1%) (n=1) sx (mm) sx' (mrad) sy (mm) sy' (mrad) Hi-flux Hi-coh I Hi-coh II m-beam 5.3 0.077 1300 100 0.15 0.15 2.0 0.0002 1064 0.658 25 1.7 1470 861.8 12.5 12.5 8.81E+15 1.34 7.74E+21 0.84 7.30E+11 1.27E+18 8.27 1.11E+24 1.50 6.78E+06 0.2365 4.35E+13 0.7139 43.85 3.87 43.85 3.87 5.3 0.0077 1300 10 0.015 0.015 2.0 0.0002 1064 6.578 25 1.7 1470 861.8 4.0 4.0 8.81E+14 1.34 3.08E+22 0.84 1.31E+12 1.27E+17 8.27 4.43E+24 1.50 6.78E+05 0.2365 1.73E+14 0.7139 10.35 2.60 10.35 2.60 5.3 0.0077 1300 10 0.015 0.015 2.0 0.0002 1064 6.578 30 1.5 2000 939.2 4.8 4.8 1.04E+15 1.52 3.63E+22 1.08 1.29E+12 7.49E+16 8.25 2.61E+24 1.50 8.00E+05 0.2680 2.05E+14 0.7733 11.34 2.38 11.34 2.38 5.3 0.0077 1300 10 0.015 0.015 2.0 0.0002 1064 6.578 3.4 1.4 240 234.1 0.5 0.5 2.67E+14 1.6 9.40E+21 1.22 2.96E+12 3.84E+16 8.36 1.35E+24 1.48 2.05E+05 0.2807 5.17E+13 0.7949 3.79 7.08 3.79 7.08 Ultra fast I Ultra fast II 5.3 0.4 0.01 0.004 0.108 0.108 0.1 0.0027 79 0.913 2.2 1.4 160 70.7 1.0 1.0 3.46E+10 1.9 5.20E+16 1.45 4.87E+07 1.30E+19 6.80 1.95E+25 1.82 3.46E+06 0.3217 4.33E+08 0.8559 10.64 12.20 10.64 12.20 5.3 1.2 0.01 0.012 0.187 0.187 0.1 0.0027 79 0.527 2.2 1.4 160 70.7 1.0 1.0 1.04E+11 1.9 6.00E+16 1.45 8.59E+07 3.89E+19 6.80 2.25E+25 1.82 1.04E+07 0.3217 4.99E+08 0.8559 13.87 15.10 13.87 15.10 Options for Improvements Injector emittance ? 0.015 nm-rad ?? Separate running modes for hi-coherence & ultra-fast ? Bunch decompression longer pulse but smaller sE/g ?? on-crest Df 0 Shen 3/31/03 No Compression st ~ 2 ps sE/g ~ 2x10-4 off-crest Df > 0 st ~ 0.1 ps sE/g ~ 2.7x10-3 off-crest Df < 0 st ~ ?? ps sE/g ~ 1x10-4 ? Improved Coherence Properties by reducing machine energy spread Operation Mode: Type of experiments Machine energy Charge per bunch Repetition rate Machine current Horizontal emittance Vertical emittance Rms bunch length Energy spread Limit on number of periods Diffraction-limited to Undulator length Undulator period Number of periods Effective number of periods Average brilliance Average flux density @ 1:1 Peak flux Peak brilliance Coherent flux Shen 3/31/03 E (GeV) q (nC) f (MHz) I (mA) e x (nm-rad) e y (nm-rad) st (ps) sE /E N0 Ed (keV) L (m) lu (cm) Nu Neff Bn (std units) (p/s/0.1%/mm2) Fp (p/s/0.1%) Bp (std units) Fc (p/s/0.1%) on-crest Df=0 Hi-flux 5.3 0.077 1300 100 0.15 0.15 2.0 0.0002 1064 0.658 25 1.7 1470 861.8 7.74E+21 7.30E+11 1.27E+18 1.11E+24 4.35E+13 off-crest Df<0 ? Hi-coh I Hi-coh II m-beam 5.3 0.0077 1300 10 0.015 0.015 2.0 0.0002 1064 6.578 25 1.7 1470 861.8 3.08E+22 1.31E+12 1.27E+17 4.43E+24 1.73E+14 5.3 0.0077 1300 10 0.015 0.015 4.0 0.0001 2128 6.578 25 1.7 1470 1209.4 4.32E+22 1.84E+12 8.91E+16 3.11E+24 2.43E+14 5.3 0.0077 1300 10 0.015 0.015 2.0 0.0002 1064 6.578 3.4 1.4 240 234.1 9.40E+21 2.96E+12 3.84E+16 1.35E+24 5.17E+13 off-crest Df>0 Ultra fast I Ultra fast II 5.3 0.4 0.01 0.004 0.108 0.108 0.1 0.0027 79 0.913 2.2 1.4 160 70.7 5.20E+16 4.87E+07 1.30E+19 1.95E+25 4.33E+08 5.3 1.2 0.01 0.012 0.187 0.187 0.1 0.0027 79 0.527 2.2 1.4 160 70.7 6.00E+16 8.59E+07 3.89E+19 2.25E+25 4.99E+08 Other Properties Type of experiments Machine energy Charge per bunch Repetition rate Machine current Horizontal emittance Vertical emittance Rms bunch length Energy spread Bandpass for pink beam Coherent flux in pink beam Average flux in pink beam Peak flux in pink beam Photons per pulse in pink beam Coherent flux fraction Coherent DW fraction in ctr cone Coherence width fwhm @100m Coherence length for pink beam Photons per coherent volume Average total power On-axis power density @20m Peak total power Peak electric field @ exit Shen 3/31/03 E (GeV) q (nC) f (MHz) I (mA) e x (nm-rad) e y (nm-rad) st (ps) sE /E Dl/l (%) Fc (p/s) Fn (p/s) Fp (p/s) np (photons) pc (%) pc (%) wc (mm) lc (mm) dD P0 (W) dP/dA (W/mm2) Pp (MW) E0 (V/m) Hi-flux Hi-coh I Hi-coh II m-beam Ultra fast I Ultra fast II 5.3 0.077 1300 100 0.15 0.15 2.0 0.0002 5.3 0.0077 1300 10 0.015 0.015 2.0 0.0002 5.3 0.0077 1300 10 0.015 0.015 4.0 0.0001 5.3 0.0077 1300 10 0.015 0.015 2.0 0.0002 5.3 0.4 0.01 0.004 0.108 0.108 0.1 0.0027 5.3 1.2 0.01 0.012 0.187 0.187 0.1 0.0027 0.116 5.05E+13 1.02E+16 1.47E+18 7.87E+06 0.116 2.01E+14 1.02E+15 1.47E+17 7.87E+05 0.083 2.01E+14 1.02E+15 7.36E+16 7.87E+05 0.427 2.21E+14 1.14E+15 1.64E+17 8.76E+05 1.415 6.12E+09 4.90E+11 1.83E+20 4.90E+07 1.415 7.06E+09 1.47E+12 5.50E+20 1.47E+08 0.49 0.56 0.074 0.129 3 19.62 22.32 0.413 0.129 12 19.62 22.32 0.413 0.181 9 19.39 22.06 1.114 0.035 4 1.25 1.42 0.373 0.013 99 0.48 0.55 0.284 0.013 114 31,679 3,168 3,168 895 0.336 1.009 2655 266 266 62.9 0.0199 0.0597 4.563 0.456 0.228 0.129 126.0 377.9 5.34E+08 7.15E+08 5.06E+08 1.04E+09 1.16E+10 1.54E+10 Short-Pulse Source Comparison fat bunch Shen 3/31/03 Conclusions Phase II ERL would offer 100x more coherent flux and coherence fraction for hard x-rays than present-day sources, comparable to prototype XFEL source Many scientific applications benefit substantially, e.g. in coherent scattering & diffraction, and in x-ray holography and coherent patterning, possibly opening up new research areas Improvements in ERL coherent flux require long undulator, which in turn requires reducing machine energy spread by bunch decompression or by some other means Further improvements in coherence are possible only if injector emittance can be further reduced Ultra-fast mode of ERL can still be a leader in peak brilliance for short-pulses. Further improvement is determined by how much charge in a single bunch and by energy spread from bunch compressor Shen 3/31/03