Transcript Document
Diffraction T. Ishikawa Part 2, Dynamical Diffraction 7/17/2015 JASS02 1 Introduction 7/17/2015 In the 1st part, we dealt with “Kinematical Theory” where the scattered x-rays suffer no additional scattering. The 2nd part is designed to give basic ideas of “Dynamical Diffraction” observed with perfect crystals as a result of multiple scattering. JASS02 2 Basic Idea Kinematical Diffraction Dynamical Diffraction 7/17/2015 JASS02 3 Maxwell Equation (1/2) D rtrue B 0 E B t H jtrue D t D eo E P H B mo M P eo c E 7/17/2015 E: electric field D: electric displacement H: magnetic field B: magnetic induction r: charge density j: current density P: polarization M: magnetization e0: permittivity of vacuum m0: permeability of vacuum c: electric susceptibility c: speed of light in vacuum JASS02 e o mo 1 c2 4 Maxwell Equation (2/2) For periodically oscillating electromagnetic field; jtrue = 0, rtrue = 0. For non-magnetic materials, M=0 so that B = m0H. D 0 H 0 E mo H 7/17/2015 H t D t JASS02 5 Polarization Polarization P = electric dipole moment in unit volume P eo c E e2 P p r r ex r r r r E m 2 e2 2 2 c r r r 2 r r ro r r 2 2 m e o 4 e o mc e2 c(r) have the periodicity of crystal lattice c r c g exp ig r g r r 1 vc F g exp ig r g ro 2 cg F g vc 7/17/2015 JASS02 6 Electromagnetic Wave in Periodic Medium Bloch Theorem Incident Plane Wave in Vacuum exp i K o r t Waves inside Periodic Medium E exp i K o r t u r u(r) has periodicity of crystal lattice u(r) can be expanded in a Fourier Series with reciprocal lattice vector, g. E exp i K o r t Eg exp ig r g e i t E g exp iK g r Bloch Wave g K g Ko g 7/17/2015 JASS02 7 Some Mathematic.... D H i D, i H t t E imo H imo i D 2 m oe o 1 c r E 2 2 c K2 K c 2 1 c r E 1 c r E ; X ray wavenumber in vacuum E g exp iK g r iK g E g exp iK g r E g exp iK g r K g K g E g exp iK g r 7/17/2015 JASS02 8 Mathematics (cont’d) E g[ K g ] 1 K g K g Eg 2 Kg Eg exp ig r K g2 E g[ K g ] exp ig r c r E r c h exp ih' r Eh exp iK h r ' h h g h c g -h Eh exp iK g r h h g, h Kh K g 2 2 2 g K g Eg[ K g ] K Eg K h c gh Eh exp iK g r 0 (*) 7/17/2015 JASS02 9 Basic Equations for Dynamical Theory Condition for the equation (*) should be valid for arbitrary r gives the basic equation for dynamical diffraction theory: K g2 E g[ K g ] K 2 E g K c g h Eh 2 h Since c g 106 Eg[ k ] Eg g the basic equation is well approximated by K g2 K 2 K 7/17/2015 2 E g c g h Eh h JASS02 10 Boundary Conditions (1/3) z vacuum Fields in vacuum: (Ea, Da) Fields in crystal: (E, D) z=H crystal Boundary conditions from Maxwell Equations: Continuity of tangential components of Electric Fields Et =Eat Continuity of normal components of Electric Displacements Dz =Daz t: tangential component, z: z(=normal) component 7/17/2015 JASS02 11 Boundary Conditions (2/3) Wavefield : Superposition of plane waves E exp it Eg exp iK g r g Wave Vector in Crystal: Kg Wave Vector in Vacuum: Km Kgt = Kmt Km crystal wave E Eg exp iK g r , D Dg exp iK g r g Kg g vacuum wave E a Ema exp iK m r , Da Dma exp iK m r m 7/17/2015 m JASS02 12 Boundary Conditions (3/3) unit vector normal to the surface: zˆ unit vector tangential to the surface: tˆ K g K gz zˆ K gt tˆ K m K mz zˆ K mt tˆ Boundary Condition at z=H (Crystal Surface) Egt exp iK gz H Dgz exp iK gz H K gt Kmt K gt Kmt cg 7/17/2015 1 K gt K mt Emta exp iK mz H a Dmz exp iK mz H K gt K mt K gt Kmt E g exp iK gz H JASS02 K gt K mt Ema exp iK mz H 13 Two-Wave Approximation (1/3) Under usual experimental conditions, only two waves with K0 (incident direction) and Kg (diffracted direction) are strong inside the crystal. Wavefield in crystal: E E0 exp iK 0 r E g exp iK g r Basic Equation: K 2 o k 2 Eo K 2 Pc g Eg 0 K 2 Pc g Eo K g2 k 2 Eg 0 Averaged refractive index of crystal: co co n 1 k K 1 2 2 7/17/2015 Polarization Factor P 1 P cos 2 B JASS02 for polarization for polarization 14 Two-Wave Approximation (2/3) Condition for the basic equation, K 2 o k 2 Eo K 2 Pc g Eg 0 dispersion surface dispersion sphere K 2 Pc g Eo K g2 k 2 Eg 0 to have non-trivial solutions is K o2 k 2 K 2 Pc g K 2 Pc g 0 K g2 k 2 Ko Kg g K g Ko g O G By introducing new parameters: o K o k g Kg k 7/17/2015 o g JASS02 1 2 2 K P cgcg 4 15 Two Wave Approximation (3/3) y For non-absorbing crystals, c g c g* (complex conjugateof c g ) cgcg cg Tg 2 Lo When we introduce a new parameter L as 2 cos B cos B L , K P cg P cg o g x To Near the point Lo, o x sin B y cos B g x sin B y cos B 2 cos 2 B L2 Dispersion surfaces form Hyperbolla x sin B y cos B 2 7/17/2015 JASS02 2 2 2 2 cos2 B L2 16 Amplitude Ratio 2 o Eo KP c g E g 0 KP c g Eo 2 g E g 0 Amplitude Ratio rj Egj Eoj 2oj KPc g KPc g 2 gj j = 1, 2 7/17/2015 JASS02 17 Diffraction Geometry Symmetric Laue Case 7/17/2015 Symmetric Bragg Case JASS02 18 Symmetric Laue Case Dispersion sphere of vacuum wave (radius K) Starting point of wave vector Ko: P Laue point: L Deviation from Bragg Condition LP K g o po pg 2sin B LP cos B 2 K B sin B 7/17/2015 JASS02 19 Symmetric Laue Case: Deviation Parameter Deviation Parameter W W po pg L1 L2 2L sin B 2 W cos B L 2 cos 2 B g o L2 B g o B sin 2 B P cg polarization W polarization W Solving above equations, we can get oj L cos B gj L W cos 2 B W Usually W=W 7/17/2015 cos B W W 1 W W 1 2 2 upper sign: j=1, lower sign: j=2 JASS02 20 Symmetric Laue Case: Amplitude Ratio rj Egj Eoj P P exp i g W W 2 1 upper sign j 1, lower sign j 2 Here, c g c g exp i g For non-absorbing crystals, c g c g* , g g , c g c g cg exp i g cg 7/17/2015 JASS02 21 Symmetric Bragg Case (1/2) Between L1 and L2, z has no intersections with dispersion surfaces. Total Reflection Region Deviation from Bragg Condition B po pg LP K g o cos B 2sin B LP 2 K B o sin B 7/17/2015 JASS02 22 Symmetric Bragg Case (2/2) o : Deviation from geometrical Bragg angle by refraction o 2 1 n co sin 2 B sin 2 B oj L cos B gj L po pg L1L2 2L sin B B o 7/17/2015 W 2 1 W 2 1 Amplitude Ratio rj g o W W upper sign: j=1, lower sign: j=2 Deviation parameter, W W cos B 2 W cos B L Egj Eoj P P exp i g W W 2 1 upper sign: j=1, lower sign: j=2 JASS02 23 Rocking Curves Use monochromatic plane wave as an incident beam; Rocking the sample crystal around the Bragg angle; We can observe so-called rocking curve. 7/17/2015 JASS02 24 Rocking Curve: Symmetric Laue Case (1/3) Incident Wave Ka,Eoa Eoa exp iK a r Crystal Wave z=0 o-wave Eo 2 exp iK o2 r Kg2, Eg2 Ko2, E02 z=HK , E g1 g1 Kga,Ega 7/17/2015 Eo1 exp iK o1 r Ko1, Eo1 Ka,Eda g-wave Eg1 exp iK g1 r Eg 2 exp iK g2 r Outgoing Wave exp iK r o-wave Eda exp iK a r g-wave Ega JASS02 a g 25 Rocking Curve: Symmetric Laue Case (2/3) Boundary condition at z = 0 (incident surface) Eoa Eo1 Eo 2 0 Eg 1 Eg 2 a 1 W Eoj 1 Eo 2 2 1W 1 P 1 Egj exp i g 2 P 1W 2 Boundary condition at z = H (exit surface) Eo1 exp iKo1H Eo 2 exp iKo 2 H Eda exp iK z H Eg1 exp iK g1H Eg 2 exp iK g 2 H Ega exp iK gza H K oj PPj zˆ + K a K gj PPj zˆ + K a g zˆ:inner normal vector at the incident surface K co - oj 2 PPj cos B upper sign: j=1, lower sign: j=2 At W=0 (exact Bragg condition), Kojz K gjz PPj K za Eoj E gj 7/17/2015 JASS02 26 Rocking Curve: Symmetric Laue Case (3/3) I gW Io W d Ega Eoa a d a o I E Io E 7/17/2015 2 2 sin 2 H W 2 1 L W 2 1 W 2 cos 2 H W 2 1 L W 2 1 JASS02 27 Rocking Curve: Symmetric Bragg Case (1/3) Boundary condition at z = 0 Eoa Eo1 (W 1), Eo 2 (W 1) Ka,Eoa Ega Eg1 (W 1), Eg 2 (W 1) Kga,Ega z=0 Ko1, Eo1: W<-1 Ko2, Eo2: W>1 7/17/2015 Ega Kg1, Eg1: W<-1 P P exp i g W W 2 1 Eoa upper sign: W<-1, lower sign: W>1 Kg2, Eg2: W>1 JASS02 28 Rocking Curve: Symmetric Bragg Case (2/3) W 1 z-componentsof Ko and K g arecomplex K oj PP j zˆ + K o cos B L K gj PP j zˆ + K + g K co oj 2 PP j Another solution will give a divergent solution sin B 1W 2 i i Koz Im K oz K gz L tan B 7/17/2015 W i 1 W 2 E a g JASS02 P P exp i g W i 1 W 2 Eoa 29 Rocking Curve: Symmetric Bragg Case (3/3) Rocking curve (Darwin Curve) I gW Io Ega 2 Eoa 2 2 W W 1 1 2 |W|<1: All incident energies are reflected back. Total Reflection ( W 1) ( W 1) B P cg sin 2 B W co sin 2 B Center of total reflectiuon, W=0, is deviated from geometrical Bragg angle B by c o sin 2 B Range of total reflection (-1<W<1) 2 P cg sin 2 B L sin B P 2 ro Fg 2 c g or Fg vc sin 2 B Darwin Width, ~microradian order 7/17/2015 JASS02 30 Absorbing Crystal Absorption: Anomalous dispersion term into atomic scattering factor Centrosymmetric Crsyatls c g , c g :real c g c g i c g c g ro r Fg o vc vc 2 2 ro 2 ro 2 c g F vc g vc f o j c g c g , c g c g f j exp ig rj j cg cg f exp ig r j j j c g c g , c g :complex c g c g*, c g c g* c g c g c g c g 2 2ic g c g A new parameter k is defined as c g k c g 7/17/2015 JASS02 31 Symmetric Laue Case: Absorbing Crystal (1/2) m H exp 2 2 I cos B 2 H W 1 2 k H W 1 sinh sin Io W 2 1 L L W g L H W 2 1 sin L Oscillating Term, Hardly to be observed experimentally without very good plane wave 2 averaging c g e c o I gW 1 Io 4 W 2 1 sin 2 B cos B ,W B P c g P c g Pe mH 1 exp cos 1W 2 B Bloch Wave small absorption Pe mH exp 1 cos 1W 2 B Bloch Wave b large absorption Anomalous Transmission (Borrman Effect) 7/17/2015 JASS02 32 Symmetric Laue Case: Absorbing Crystal (2/2) Forward Diffraction 2 Pe I dW 1 W mH 1 exp 1 I o 4 1W 2 1W 2 cos B Pe W mH exp 1 1 1W 2 1W 2 cos B 2 Thin Crystal 7/17/2015 Thick Crystal JASS02 33 Symmetric Bragg Case: Absorbing Crystal Rocking curve for a symmetric Bragg case diffraction from a semi-infinite absorbing crystal (with centrosymmetry) I gW Io L g L L2 1 W 2 g2 c o P c g W 2 g 2 1 k 2 2 4 gW k k=0 2 1 k 2 k = 0.1 7/17/2015 JASS02 34 Summary Very quick scan of x-ray diffraction theory was attempted. You may need reference text books. References Dynamical Theory of X-Ray Diffraction, A. Authie, Oxford University Press, 2001 Handbook on Synchrotron Radiation Vol. 3, North-Holland, 1991. 7/17/2015 JASS02 35 Thank you for your attention. Acknowledgement Some materials presented here are originally prepared by Prof. Seishi Kikuta for his textbook written in Japanese. Some ppt materials have been prepared by Dr. Shunji Goto. Discussion in preparing the lecture with Drs. Shunji Goto, Kenji Tamasaku and Makina Yabashi is appreciated. 7/17/2015 JASS02 36