EUV spectroscopy of Xe ions from LHD

Download Report

Transcript EUV spectroscopy of Xe ions from LHD

IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors,
26 - 28 September, 2007
EUV spectroscopy from LHD
and Atomic Data
T. Kato
National Institute for Fusion Science
Introduction
1. Xe ion spectra and atomic data
2. Fe ion spectra and atomic data
3. Data needs for ITER modelling
1.
Xe ion spectra
T.Kato, G. O’Sullivan, N. Yamamoto, H. Tanuma et al
• We have observed EUV spectra of Xenon ions from the Large Helical Device
(LHD) at the National Institute for Fusion Science in Toki in the wavelength
range of 10 – 17 nm using a high resolution SOXMOS spectrometer. A small
quantity of xenon gas was injected into the Large Helical Device. In some
cases, the plasma evolution was stable and a steady discharge was obtained
for several seconds, but sometimes the plasma underwent radiation collapse
and rapid cooling and in this situation the EUV yield was significantly
increased. Investigation of the spectra showed that during the heating phase
and in a stable plasma, the emission was dominated by ions with open 4s and
4p subshells, while during radiation collapse, the spectra were dominated by
lines from species with open 4d subshells. From a comparison of these
spectra with theoretical data from atomic structure calculations and also with
charge state specific data generated in Tokyo Metropolitan University it was
possible to make tentative assignments of the strongest lines arising from 4d4f and 4p –4d transitions in Xe XVII and XVIII.
SOXMOS Spectrometer
(TESPEL)
LHD
0 deg.
SOXMOS
plasma
-1 deg.
24 cm
Type
grazing incidence spectrometer
Grooves
600 grooves/mm
Wavelength
1 ~ 35 nm
Detector
2 MCPs + Phopheor + Photodiode Array
Resolution
~ 0.01 nm
Normal Discharge, stable sustained heating
t = 400 ms
Xe puff
Xe puff
Normal Discharge (Te)
Te(=0) ~ 1000 eV, Te(=0.5) ~ 700 eV
Discharge with Radiation Collapse
t = 400 ms
Xe puff
Xe puff
Discharge with Radiation Collapse (Te)
Te(=0) ~ 500 eV, Te(=0.5) < 200 eV @ t=1.4 s
Theory for Xe17+
• Cowan code
Hatree Fock with Configuration Interaction
(HFCI) by G. O’Sullivan (UCD)
• GRASP2
Multiconfiguration Dirac Fock by D. Kato
(NIFS)
• Cascade model (for charge exchange
spectra) by N. Yamamoto (Osaka Univ.)
Grasp code for n = 4, Hullac code for other
levels
EUV spectrum of Xe ions - shorter
wavelength (10 - 14 nm)
t = 400 ms
800
700
600
500
8
6
3
1
5
7
FeXXIII
FeXXI
FeXXI
FeXX
FeXIX
FeXXII
FeXX
FeXXII
FeXIX
300
FeXXII
2
400
FeXIX 108.371
Counts
4
f7_51455 without Xe
f5_51456 0 deg. (center)
f5_51459 -1.0 deg. (edge)
200
100
110
120
Wave length (A)
130
140
Spectral lines during the heating are
identified with 4p - 4d transitions of Xe17+
(4d) - Xe25+(4s) ions in 10 - 12 nm
Xe25+118.935
13
FeXX117.167
113.68
Xe23+113.59
12
Xe9+
11
Xe9+114.8
10
Xe10+
Xe11+,12+
Xe18+108.409
Xe19+108.845
109.53 Xe17+109.521
Xe22+109.66
9
1000
119.02
300
8
1500
14
5
FeXIX108.371
3
400
7
6
f5_51456 0 deg. (center)
f5_51459 -1.0 deg. (edge)
f7_51455 without Xe
Xe20+108.564
1 2
500
107.24
Counts
600
4
108.01
700
Xe20+107.41, 94
Xe17+108.005
2000
Xe17+107.224
800
500
200
104
106
108
110
112
Wave length (A)
114
116
118
120
Identification of Xe ion lines (10 - 12nm)
Line
No.
1
Ņ
3
WL(A)
LHD
107.24
Ó
108.01
5
Ņ
108.39
Ņ
6
7
Xe20+
108.87, .96 Xe19+
109.53、 .63 Xe17+
112.37Xe10+
112.55
113.68
Xe23+
114.79
Xe9+
119.02
Xe25+
11
12
13
14
Ion
WL(A)
Lower state
Upper state
Xe17+
Xe17+
Xe17+
Xe17+
Xe20+
Xe18+
Fe18+
107.185
107.224
108.005
107.922
107.94
108.409
108.371
4p6 4d 3/2
4p6 4d 2D 5/2
4p6 4d 2D 5/2
4p6 4d 3/2
4p5 4d2 7/2
4p5 4d2 2F7/2
4p5 4d2 2D5/2
4p5 4d 2 5/2
4p6 1S0
4p5 4d 1P1
Ref.
No.
21
4
4
21
35
4
108.564 4p4 2
108.845 4p5 3/2
109.521 4p6 4d 2D 3/2
4p3 4d 3
4p4 4d 3/2
4p5 4d2 2F5/2
21
21
4
112.055 4d8 3F4
4d7 4f
4
113.590 4p 1/2
4d3/2
92
114.8
4d D
4d8 4f
118.935 3d10 4p 2P 1/2 3d10 4d 2D 3/2
21
4
4
Spectral lines during the heating are identified from
ions with outer 4s or 4p electrons ( Xe23+(4s24p) Xe25+(4s) ) in 12 - 16nm
t = 400 ms
1000
#51450_4 Center (o deg.)
#51451_4 Edge (-1.0 deg.)
14
800
4
Fe XXIII 13.283 nm
6 FeXXII 13.574
Counts
600
1
3
8
5 6
2
9 CrXXI 14.99
7
10
11
13
400
14. Xe24+
13. Xe23+
11. Xe23+
8. Xe25+
7. Xe24+
5. Xe23+
3. Xe24+
1. Xe23+
200
0
1200
1400
1600
Channel number
1800
2000
1. Xe23+
(4s24p)
3. Xe24+
(4s2)
5. Xe23+
7. Xe24+
8. Xe25+
(4s)
11. Xe23+
13. Xe23+
14. Xe24+
Identification of Xe ion lines (120 –160 Å)
Line
WL(A)
LHD
Ion
1
2
3
8
130.66 Xe23+
131.709 Xe18+?
132.51 Xe24+
(Xe19+
134.85 Xe23+
135.34 Xe10+
136.23 Xe24+
Xe24+
138.39 Xe25+
11
160.37
Xe23+
12
13
161.46
162.25
Xe8+
Xe23+
14
164.02
Xe24+
WL(A)
Lower
Upper
Ref.
No.
No. N
5
6
7
15
Xe8+
130.551
[131.740] 4p6 1S
132.459
132.875?)
134.948
135.334 4d8 1D, 3F
136.169 4s4p 3P2
[136.25]
4s4p 1P
138.330
4p 2P1/2
[138.389] 4p 2P3/2
160.503 4s24p3/2(J=3/2)
5
3
4p 4d D
4s4p 3P2
4d75p
4s4d 3D1
4s4d 1D
4d 2D3/2
4d 2D5/2
4s[4p2
3/2(2)](J=3/2)
10 1
[161.742] 4d S0
4d95p 3D1
162.47
4s[4p 1/2(1)]
2
4s 4p3/2(J=1/2) 4p3/2(J=1/2)
164.352
4s2 1S0
4s4p 1P1
[164.412]
[165.322] 4d10 1S0
4d95p 1P1
21
4
21
21
21
21
21
4
21
4
21
4
21
21
4
4
Spectra during radiation collapse indicate
a recombining plasma
1400
f4_51448 Radiation collapse
f7_51449 without collapse
1200
1
1000
3
14
8
5
6 7
2 4
800
600
12
400
1
3
4
5
7
8
9
10
11
200
0
120
130
140
150
13
1. Xe23+
2. Xe18+
24+
3. Xe24+
5. Xe23+
6. Xe10+
7. Xe24+
8. Xe25+
11. Xe23+
12. Xe8+
13. Xe23+
14. Xe24+
160
• Many new lines appear in the spectra during radiation collapse.
• No.2 (131.709A, Xe18+ ?) and No.6 (135.34A, Xe10+?) increase.
• The continuum emission increases.
• No.12 is identified as Xe8+. Temperature is low.
600
0
120
125
130
135
XI
140
145
Wavelength (A)
XI
150
155
X
160
13(XeXXIV)
12(XeIX)
11 (XeXXIV)
X
X
X
X
14(XeXXV)
XVII + XVIII
XVII + XVIII +XXVI
X
X + XVII + XVIII
XVII + XVIII
XI
XI
XVII ?
XI
XVII + XVIII
XVII + XVIII
8(XXVI)
5 (XXIV)
6 (XI)
7 (XXV)
3 (XXV)
4 (FeXXIII+XeXI)
1(XXIV)
2 (XIX + XXV)
XVII + XVIII
XI
X
XII
XVII ?
X
800
X
1000
XVII + XVIII
1200
X
X
Counts
Quasi continuous background
4p64dm - 4p54dm+1 + 4p64dm-14f
Xe XII - XVI (m = 3 to 7) in 121 - 155A
1400
LHD f4_51448 collapse
400
XVII-XVIII lines are not identified
200
165
Charge Exchange (CX) Spectroscopy of
Xe and Sn ions
by Hajime TANUMA, Hayato OHASHI, Shintaro SUDA
Department of Physics
Tokyo Metropolitan University
Xe ion spectra by Charge Exchange Xeq+ + He --> Xe(q-1)+
Xeq+-He
q=23
Intensity / arb. units
22
4p1
4p2
21
4p3
20
4p4
19
4p5
18
4p6
17
4p64d
16
8
12
16
Wavelength / nm
20
24
4p64d2
Ground state
Configuration
of
Incident ions
Xe ion spectra by Charge Exchange Xeq+ + Rg --> Xe(q-1)+
Wavelength (nm)
Dominant capture levels
- prediction with the classical over-barrier model -
n (principle quantum number)
12
A
q+
+ Rg A
(q-1)+
+
(n) + Rg
nE q
10
Ar
8
Xe
It : ionization energy
of the target atom
6
He
He :
Ar :
Xe :
4
2
1+2 q
2I t(q + 2 q )
6
8
10
12
14
q (incident ion charge)
16
18
24.588 eV
15.760 eV
12.130 eV
We make a cascade model for CX spectra
Energy Levels Diagram in Radiative-cascade Model
Xe18+ + Xe  Xe17+ (nl) + Xe+  Xe17+ (n’l’) + hv
total energy levels: 8831
E(4s24p6)=430eV
n=7
8
9
10
11 12
13 14 15
16 17 18 19 20
6p
5d
5p
5p
5s
5d
7p
n=5
4f
4f
4f
Electron transfer
energy band,
dE~1eV
4f
l = 10-12A
4f
4d
4f
4d
4d
l = 12-15A
4f
4d
4s24p44d4fnl
4s4p64fnl
4d
4s24p54fnl
4s24p6nl
5
2
4s24p54dnl 4s4p64dnl 4s24p44d2nl 4s4p 4d nl
Xe17+ Line identification based on 4p64d - 4p54d2
4p64d 2DJ - 4p54d2 2FJ’ 2DJ’ (Ground state 4p64d 2D3/2 )
Comparison with calculations by GRASP code and Cowan’s code
700
5
1.0
4
Xe17+ 109.52 (Sa)
3
2
13
10
7
6
5
gAr (s )
4
Xe17+
Grasp
gAr_Cowan_Osal
CX_Xe18_Xe
LHD_f5_51459
0.8
600
0.6
-1
3
500
2
10
7
6
5
4
3
Xe17+ 108.005
Xe17+ 107.224
0.4
12
400
0.2
2
11
10.4
0.0
300
10
10.5
10.6
10.7
10.8
10.9
11.0
11.1
11.2
11.3
11.4
wavelength (nm)
• Wavelengths calculated fit well with the known three lines.
• Broad feature of CX spectrum may be due to cascade transition.
LHD spectra (yellow) with Cowan (blue) and GRASP
(red) code calculations for Xe XVIII for 120 – 150 A.
CX spectrum (green) of Xe XVIII
12
0.8
2
800
37
37
gAr -1(s
)
12
11
10
9
8
7
600
62
62 50
XVII + XVIII
3
XVII + XVIII
1000
XVII + XVIII
4
Xe17+
XVII + XVIII
XVII + XVIII
5
Grasp
gAr_Cowan_Osal
CX_Xe18_Xe
f4_51448
LHD_f4_51448#1
XVII + XVIII
1200
XVII + XVIII
9
8
7
6
XVII + XVIII
10
0.6
0.4
50
6
5
4
400
0.2
3
14
2
12
200
57
14
10
10
12.0
0
12.2
57
0.0
12.4
12.6
12.8
13.0
13.2
13.4
13.6
wavelength (nm)
13.8
14.0
14.2
14.4
14.6
14.8
15.0
Cascade Model spectra for charge transfer spectra
Xe18+ + Xe --> Xe17+ (nl ) --> Xe17+ (n’l’) + hv
(by N. Yamamoto)
Strong by cascade
GRASP calc.
Red: w.o. cascade
Blue: with cascade
0.8
3
CX_Xe18_Xe
Grasp_Inten
gAr_Grasp
Xe17+
lamda = lamd -0.28
11
2
10
0.6
10
Cascade Intensity
9
8
gAr (s-1)
7
6
5
109
4
CX
101 0
0.4
3
0.2
108
2
107
1
12.0
12.5
13.0
13.5
14.0
14.5
15.0
15.5
0.0
16.0
wavelength (nm)
The wavelengths by GRASP code are shifted by 2.8A.
Assignments of Rb I like lines in Xe XVIII based on 4p64d-4p54d2
transitions (unless otherwise stated) New (Kato & O’Sullivan)
CX spectra show 4p54d2 levels are made
through Charge Transfer from 4p6
(Inner shell excitation)
• Xe 18+ (4p6) + Xe (or He)
---> Xe 17+ (4p54dnl )
or Xe 17+ (4p44d2nl )
---> Xe17+ (4p54d2 ) + hv (4p - nl)
---> Xe17+ (4p64d ) + hv (4p - 4d)
LHD spectrum with Xe XVII spectrum
CX (green), Cowan code calculations for 120 – 160 A.
gA (s-1) (red)
0.6
300x10
1200
CX_Xe17+ + Xe
Cowan gA (s-1)
LHD_f4_51448
0.5
1000
0.4
800
200
0.3
600
150
0.2
400
100
0.1
200
50
0.0
120
250
0
0
125
130
135
Wavelength (A)
140
145
150
gA (s-1)
Intensity (a.u.)
Xe16+
9
Assignments of SrI like lines in Xe XVII 4p64d2 - 4p54d3
(Only lines with gA>3x1010 s-1 are included) New
Kato & O’Sullivan (2007)
Study of highly ionized Xe spectra in JT-60U reversed shear plasmas
(H. Kubo (JAEA), J. Nucl. Mater., 2007)
In some tokamaks, Xe has been injected to study high-Z impurity behavior or to enhance
radiation losses for reduction of heat load to the walls.
Xe spectra (3s-3p & 3p-3d) observed in JT-60U
0
Xez+ density (arb.)
Xez+
density
(arb.)
nXe (arb.)
Calculation
(b)
37+, 41+
5)2
2(2p)
Xe2Xe
, Al6(3p
like
Xe37+ (1s)
(2s)Cl-like
(3s)
(3p)5
8
0.8
Xe37+ , Cl like
6
0.6
Xe28+
0.4
4
z
43
4342
4241
41
4040
3939
3838
37
3637
3536
34
33
32
31
30
29
28
27
26
25
35
34
33
32
31
30
29
28
27
26
0.2
0

0.0
00
0
100
0.2
0.2
0.4
0.4
0.6
r/a0.6
0.8
0.8
r/a
/a
規格化小半径
Normalized minor radius
1.0
1
20
10
0
4
6
8
10
12
波長 (n(nm)
m)
Wavelength
Xe XLII*
Te
1
Xe XLIV
Xe XLIII
ne
30
Xe XLIV
Xe*
2
Xe*
3
Xe XLIII
Xe XLIV
Xe XLII*
ITB
Xe XLI*
Xe XLII*
(a)
4
1.0
分布(arb)
nsity (arb.)
*The red indicate the lines observed for the first time.
40
5
(arb.)
Intensity
強 度 (arb.)
Te (keV) / n e (1019 m-3)
Internal transport barrier
14
16
HULLAC and Desclaux’s code were used for the
analysis.
In the reversed
shear plasma, we can simply calculate spectral lines from the highly ionized Xe atoms
(c)
inside-1 the internal transport barrier using a coronal equilibrium model and a collisional radiative model
measured
10
with
the electron temperature and density at the plasma center.
Summary
• EUV Xe ion spectra in 10 ~ 16nm from LHD were measured.
• Spectra during heating phase are identified to be lines from
Xe 23+ (4p, 762.4 eV) to Xe 25+ (4s, 857.0eV). (outer 4s or 4p
electrons)
• They are strong at 25 cm from the center.
• The spectra from radiation collapse phase are considered to
be emitted from Xe8+ (4d10, 179.9 eV) to Xe17+ (4d, 452.2 eV).
(open 4d shell)
• We have made line identifications for Xe17+ and Xe16+ spectral
lines in the wavelength range of 12 - 16 nm.
• Unidentified lines of highly charged Xe ions are measured in
JT60 in the wavelength range of 4 - 16 nm.
• We will make a theoretical model for Xe ion emissions for
LHD and charge exchange spectroscopy by ECR source.
2. Fe Spectra and Atomic Data
• Fe is an intrinsic impurity in Laboratory
Plasmas
• Important also in Astrophysics and the Sun
• We are developing a non-equilibrium model for
Fe ion emissions.
• We studied EUV spectra from Fe XIII ions for
plasma diagnostics
• We evaluate Atomic Data for Fe ions
Ionization, Excitation
EUV Spectra measured from LHD
~ FeXIII lines region 196-210A ~
Ne>1013cm-3,
Te=136.6eV,
N(FeXI)=1.0, N(FeXII)=3.0, N(FeXIII)=0.4
FeXIII
FeXII
FeXI
Sum
EUV spectra measured from the Sun
Energy levels for Fe XIII lines
Ip=361eV
#66810-4.3s@LHD (5)
(1)
(3)(4)
(2)
1S 1 P 1D 1F 3S 3P 3D 3F 5S
(6)(7)
3s23p3d
3p-3d transition
(1) 196.525A: 1D2-1F3 (with FeXII)
(2) 200.021A: 3P1-3D2
(3) 201.121A: 3P1-3D1 (with FeXII)
(4) 202.044A: 3P0-3P1
(5) 203.793A+203.826A: 3P2-3D2,3D3
(6) 208.679A: 1S0-1P1
(7) 209.617A: 3P1-3P2
(1)
(4,7)
(6)
(3s23p2-3s23p3d)
(5)
3s3p3
3s23p2
Hullac v.s. Aggarwal v.s. CHIANTI
by N. Yamamoto
Hullac -DW
Aggarwal, 2005 –R-matrix
CHIANTI (Landi,1999) -DW
Te=136eV (=logT[K]=6.2)
Ne=106cm-3
Ne=1010cm-3
Ne=1015cm-3
Hullac / Aggarwal – Cij- excitation
I. Murakami
Fe XIII 3s2 3p2 3P1 - 3s2 3p 3d 3D2
1.00E+01
Fe XII 3s2 3p2 3p2 - 3s2 3p3d 3D3
1.00E+02
Hullac
adas-hm
Gupta, G.P.,Tayal, S.S.(1998)
Aggarwal, K.M., Keenan, F.P.(2005)
Effective collision strength
Effective collision strength
Hullac
adas-hm
Gupta, G.P.,Tayal, S.S.(1998)
Aggarwal, K.M., Keenan, F.P.(2005)
1.00E+01
Aggarwal
Hullac
Hullac
1.00E+00
1.00E+04
1.00E+05
Aggarwal
1.00E+06
1.00E+07
Te (K)
1.00E+08
1.00E+09
1.00E+00
1.00E+04
1.00E+05
1.00E+06
1.00E+07
Te (K)
1.00E+08
1.00E+09
Hullac / Aggarwal – Cij- excitation
I. Murakami
Fe XIII 3s2 3p2 3P1 -3P2
1.00E+01
Fe XIII 3s2 3p2 3P1 - 1D2
1.00E+01
Aggarwal
Hullac
adas-al97
adas-hm
Gupta, G.P.,Tayal, S.S.(1998)
Tayal, S.S.(2000)
Aggarwal, K.M.,Keenan, F.P.(2005)
1.00E+00
Hullac
Effective collision strength
Effective collision strength
1.00E+00
Aggarwal
1.00E-01
1.00E-01
Hullac
1.00E-02
Hullac
adas-al27
adas-hm
Gupta, G.P.,Tayal, S.S.(1998)
Tayal, S.S (2000).
Aggarwal, K.M.,Keenan, F.P. (2005)
1.00E-02
1.00E+04
1.00E+05
1.00E+06
1.00E+07
Te (K)
1.00E+08
1.00E+09
1.00E-03
1.00E+04
1.00E+05
1.00E+06
1.00E+07
Te (K)
1.00E+08
1.00E+09
Fe XIII
Effective collision strength
3s23p2 3P0 – 3P1
3s23p2 3P0 – 3P2
3s23p2 3P0 – 1D2
3s23p2 3P0 – 1S0
0
105
3x105
5x105
Te (K)
Tayal S. S., ApJ, 544, 575 (2000)
Aggarwal, K. M. & Keenan, F. P., A&A, 429, 1117 (2005)
by I. Skobelev and I. Murakami
Collision strength and effective collision strength
3s23p2 3P1 – 3s23p3d 3D1 Fe XIII
W
2
1
G
10
20
30
Energy (Ryd)
40
by I. Skobelev and I. Murakami
Gupta G.P. & Tayal S. S., ApJ, 506, 464 (1998)
Aggarwal, K. M. & Keenan, F. P., A&A, 429, 1117 (2005)
Line intensity ratios of FeXIII-1
N. Yamamoto
Line intensity ratio of Fe XIII-2
6
FeXIII 202.044 AÇ…
ëŒÇ•ÇÈÅi203.797AÅ{203.838 AÅjÇÃã° ìx î‰
Intensity Ratio, 203.8A/202.0A
EBIT
5
LHD
4
3
Active/EIS
2
12+
Te=137eV, Fe
Hullac code's data (DW)
Aggarw al's data (R-matrix)
Gupta&Tayal's data (R-matrix)
CHIANTI
1
Quiet/EIS
0
6
10
7
10
8
10
9
10
10
11
12
10
10
10
-3
Electron Density, Ne cm
by N. Yamamoto
13
10
14
10
15
10
by CHIANTI
Atomic Data are important for Plasma Density Diagnostics
by Line Ratios
Atomic data for Ionization of Fe ions
ION
Fe+0
AR1992
McGuire
1977
LAT ER (-2006)
T
*Bartlett
2002
T
*Segui
2003
T
K-shell ioniation, DWBA, -40keV,
good agreement with Llovet
experiments
*Uddin
2003
T
K-shell ionization, BED, -40keV
*Llovet
2002
E
K-shell ionization, upto 40keV
XB, ECR
Fe+1
Montague
1984
E (XB, sputter)
Stenke
1999
E
Fe+2
Mueller
1985
E (XB, PIG)
Stenke
1999
E
Fe+3
*Pindzola
1987
T
Stenke
1999
E
Fe+4
*Pindzola
1987
T
Stenke
1999
E
Fe+5
Gregory
1986
E (XB, ECR)
Stenke
1999
E
Fe+6
Gregory
1986
E
Stenke
1999
E
Fe+7
*Pindzola
1987
T
Fe+8
Younger
1983
T
Fe+9
Younger
1983
T
Stenke
1999
E
Fe+10
Younger
1983
T
Stenke
1999
E
Fe+11
Gregory
1987
E
Fe+12
Younger
1983
T
Younger
1983
T
Gregory
1987
E
Fe+14
Younger
1983
T
Fe+15
*Younger
1981
T
Fe+16
Younger
1982
T
Fe+17
Younger
1982
T
Fe+18
Younger
1982
T
Fe+19
Younger
1982
T
Fe+20
Younger
1982
T
Fe+21
Younger
1982
Fe+22
Younger
1982
Fe+13
1995
E
Gregory
1987
E
T
*Shevelko
2005
T
double ionization, semi-emprical
prediction for B-like iso-electronic
series, direct+inner-shell ion. Auger,
5-80 keV
T
*Chang
2004
T
T PDW, -10Ip
Wong
1993
E
EBIT , only one energy point
*Inal
2002
T
K-shell ionization, 1s^22s->1s2s MJ
J=-1,0,1, upto 2000Ry
Younger
1982
T
Fe+24
Younger
1982
T
Fe+25
Younger
1982
by D. Kato
*Linkemann
Fe+23
T
Experimental
data are still not
sufficient
storage ring
*Kuo
2001
T
*Uddin
2004
T
modified BED, -10Ip
O'Rourke
2001
E
EBIT , -40keV
*Uddin
2003
T
extend to higher energies (-100keV)
that O'Rourke experiments
XB: cross-beam
PIG: Penning ion
guage
*: AMDIS ñ¢ì¸óÕ
Fe+15
Ion storage ring measurement
Gregory (1987)
Linkemann
by D. Kato
Linkemann, PRL 74, 4173 (1995)
Fe+14
Theoretical calculations only
EA is dominant.
Direct cross section is factor three
smaller. Younger’s calculations (1983)
include the direct cross section only.
by D. Kato
Pindzola et al., Nuclear Fusion special suppl. (1987)
“Recommended data on atomic collision processes involving iron and its ions”
Summary for Fe ions
1. EUV spectral line intensities for Fe
XIII are studied
Line ratios with different atomic data
are compared
2. Excitation rate coefficients for Fe XIII
are evaluated
3. Ionization data are surveyed
Atomic, Molecular and Surface Data
Needs for ITER Modelling
A.S. Kukushkin1, D. Reiter2
1
ITER Organization, Cadarache, France
2 FZ Jülich, Jülich, Germany
Prepared for DCN meeting, October 2007, Vienna
Introduction
ITER: modelling is the way of extrapolation from present experiments
A&M&S data necessary to model the plasma and wall interaction
data on surface interactions equally important!
Composition of the plasma:
fusion reactions
mixed materials on PFCs
impurity seeding for core control
diagnostics
off-normal events





D, T, He
Be, C, W
Ne, Ar
Li, …
O, Fe, Cu, …
Plasma conditions
Core: fully ionized (but NBI, pellets?), T ~ 0.2 – 20 keV, n ~ 1020 m-3
Edge: a lot of neutrals, T ~ 0.1 – 200 eV, n ~ 1019 – 1021 m-3
This presentation: mostly edge modelling
Surface Materials: W
Physical sputtering: rates known (?)
No molecules  no chemical erosion (despite carbides?)
Ionization, recombination: no full data set; accuracy?
Excitation, multi-step ionization?
Elastic collisions with D, T ions?
– probably unimportant, atomic mass too large
Too many charge states, usual multi-fluid approach inefficient
“bundling” certain charge states together for transport
 raw cross-section data + technology for effective rates are needed
Surface properties: hydrogen uptake, interaction with Be, C?
Limited experience in ITER modelling yet
(DIVIMP – test particle approximation)
Seeded Impurities: Ne, Ar(, Kr, Xe)
Atomic species, no chemistry
Ne, Ar very probable candidates for the plasma control;
Kr, Xe might cause problems with transmutations, although radiate better
Ne: ionisation, recombination data exist for all charge states; accuracy?
charge exchange?
detailed excitation data? multi-step ionization?
elastic collisions with D, T ions – some data exist; accuracy?
Ar: the same state as for Ne, probably less reliable?
Data for the core conditions equally important
Conclusions for ITER data needs
Edge modelling is now an essential part of the ITER project
design analysis
development of the operation strategy
It relies strongly on the A&M&S data supplied by the community
the results depend on the completeness and accuracy of the data
Most important groups of species:
Fuel (D, T): data for the edge (A&M) and beam (A, up to 1 MeV).
Isotope effects in molecules!
Ash (He): data for the edge
Wall produced, light (Be, C): data for the edge. Hydrocarbons!
Wall produced, heavy (W): data for the edge & core. Bundling!
Seeded (Ne, Ar): data for the edge and core
Structural materials (Fe, Cu, …): data for the edge and core to
analyze severity of possible off-normal events
Data on surface interactions equally important for all groups