Transcript Document
Modeling hydrocarbon generation / transport In fusion experiments John Hogan Fusion Energy Division Oak Ridge National Laboratory First Meeting Co-ordinated Research Program ” Atomic and Molecular Data for Plasma Modelling ” IAEA Vienna International Centre September 26-28, 2005 o ITER tritium retention issues G. Federici, ITER GWS PSIF Workshop* (to be published, Physica Scripta) ITER predictions still uncertain due to • • • – chemical erosion yields at high temperature and fluxes – effects of type I ELMs (ablation) – effects of gaps – effects of mixed materials – lack of code validation in detached plasma. T issues will be heavily scrutinised by licensing authorities. Scale-up of removal rate required is 104. Potential options for T removal techniques for ITER. 1) Remove whole co-deposit by: • • 2) oxidation (maybe aided by RF) ablation with pulsed energy (laser or flashlamp). Release T by breaking C:T chemical bond: • • Isotope exchange Heating to high temperatures e.g. by laser, or ... * “New directions for computer simulations and experiments in plasma–surface interactions for fusion”: Report on the Workshop (Oak Ridge National Laboratory, 21–23 March 2005) J.T. Hogan, P.S. Krstic and F.W. Meyer Nucl Fus 49 (2005) 1202 o Fusion applications of hydrocarbon rate data Erosion / re-deposition / tritium retention (DIII-D, Tore Supra, JET examples) - long discharges -> hydrocarbon films - chemical erosion and T inventory Use of presently available data PISCES linear reflex arc (Erhardt-Langer) throat of Tore Supra neutralizer (compare E-L and Janev - Reiter) DIII-D gaps ELMs o Codes in use for erosion/deposition/retention (D Coster, J Hogan PSIF Workshop Summary Nucl Fus 2005) a. 2/3D Kinet ic codes Code WBC ERO BBQ DIVIMP DORIS Geomet ry 3D 2/3D 3D MCI EDDY 2D 3D 2D 3D Model TR TR TR TR TR TR TR Dynamics GO GO GC GO GC GO GC b. 2D fluid codes Code SOLP S EDGE2D UEDGE 2D 2D Geomet ry 2D Model SC SC SC Dynamics FL FL FL TR - trace impurity in fixed background SC - self-consistent background and impurity solution o GO - gyro orbit following (classical diffusion) GC - guiding center fluid (anomalous transport) FL - fluid + kinetic corrections CODES BBQ Scrape-off layer Monte Carlo impurity transport (3-D, velocity space) Collision model Background parameters assumed (n e, l n , T e, l T ) + [ local D flux amplification, sheath ] electrostatic (es) field, E SOL M Z dV Z /dt = -F friction -F es + random // and ^ diffusion F = -M (V -V ) / t ; F friction Z SOL Z s es = Ze E SOL F // = Random // diffusion, D // =(8E Z /3pM i) t// F = Random ^ anomalous diffusion ( D ) ^ ^ dE Z /dt = (kT -E Z )/t +W +W i T friction es Birth gyro-collisions with surface B2-Eirene Axisymmetric divertor simulation Time / space (2D) -dependent Divertor plasma fluid (B2), neutrals (Eirene) Developed by B. Braams (Emory Univ.) R. Schneider, D. Coster (MP - IPP, Garching, Greifswald) D. Reiter (FZ-Juelich) o CASTEM / TOKAFLU (R Mitteau et al J Nucl Mater 1999) Plasma-facing component thermal analysis (3-D FEM, time) IMPFLU Physics package: - self-consistent heat flux (from n e, T e, ) (includes SEE, thermionic) - local impurity redeposition heat source - test sputtering models - effects of deposited films Hydrocarbon molecular processes Erhardt-Langer CH 4 database Alman-Ruzic Janev-Reiter Relation between chemical erosion processes and H/D/T retention JET deuterium - hydrogen change-over experiment D Hillis, J Hogan et al J Nucl Mater 2001 H wall loading first 5 shots Of D-->H changeover CD / CH Molecular Band is analyzed to determine the H/D concentration in the divertor (G. Duxbury - Univ Strathclyde) 1.0 Divertor Spectroscopy Sub-Divertor-Penning CH-CD Spectroscopy 0.8 Hydrogen Concentration 48282 H concentration as deduced from the CH-CD Molecular Band 0.6 48280 Hydrogen Concentration 0.5 48283 48281 0.6 48280 0.4 0.2 0.4 0.0 40 0.3 0.2 0 50 60 80 100 120 140 Accumulated Time (s) Divertor Spectroscopy Sub-Divertor - Penning CH-CD Spectroscopy 0.1 o 48292 48284 52 54 Time (s) 56 58 60 275 160 180 Tore Supra Interior view of Tore Supra machine axis Qpoloidal direction f toroidal direction Full toroidal limiter CIEL o Coupled core/ SOL/PFC code system CASTEM-TOKAFLU-IMPFLU BBQ ITC-SANCO-MIST Deuterium sputtering stage D+ Te() ne() e BBQ Cin ( Zi) => Core C influx Sum over processes and geometries physical chemical RES MIST/ITC Superstructure leading edge neutralizer => C out (Z i) Core C efflux: D + - sputtered Self- sputtering iteration BBQ MIST/ITC o => C out (Z i) Core C efflux: self - sputtered C o < NC > BBQ carbon density averaged over f LCFS < NC > 10 18 m-3 1.2 Mid SOL heating III IV 0.6 V VI VII 0 0.9 o 0.95 1.0 radius (/a) 1.03 1.06 NC (1016 m-3) < NC > (1016 m-3) 8.8 2.3 4.4 System evolution for localized heating in inner, mid- and far-SOL 1.15 0 0 0.5 ( r/a) 1.0 for: 0 - TRIM self-sputter (TOP) 1.5 NC (1018 m-3) 1.05 - enhanced self-sputter (BOTTOM) . 0.75 0.525 0 0 1 0 o 0.5 ( r/a) 1.0 9 iteration Tore Supra heat, particle flux deposition is strongly influenced by magnetic field ripple (~7%) R Mitteau et al J Nucl Mater 2001. o o Model validation requires attention to impurity generation from non-ideal features, e.g., intra-tile gaps Tore Supra example Major radius 2.5 R(m) 2.25 0 f 20 Toroidal angle Modelled C emission (TOKAFLU / BBQ) 34909 Physical sputtering source o T e,b =35 eV, n e,b =0.67 10 19 m-3 Pinj -Prad=0.7 MW 0 f Toroidal angle Measured CII radiation 34930 (E Dufour, C Lowry et al, EPS 2005) 20 Sources of BBQ CD4 Rate Data [W. Langer, A. Erhardt, PPPL Technical Report] # 1 2 3 4 5 6 Reaction e- + CD4 e- + CD4+ 7 Product CD4+ + 2 eCD3+ + D + 2 eCD3 + D + eCD3 + D+ + eCD3+ + D + eCD3 + D CD2 + 2 D e- + CD3 8 9 10 e- + CD3+ 11 CD3+ + 2 e- Comment M M M NM: = 1/4 R1 NM: = 3/4 R1 Tot. R6+R7 M for E < 1 eV, Ex (E > 1 eV) = 1/4 Rexp As for R6, R7 = 3/4 Rexp CD3 M Ex (E<15 eV) CD2+ + D + 2 eCD2 + D + e- From CD3 (M) NM, = 3/4 R3 CD2 + D+ + e- NM, = 1/3 R10 M = Measured, NM = Not Measured, Ex = Extrapolated, A = Assumed o Sources of the BBQ CD4 Rate Data [W. Langer, A. Erhardt] 12 13 CD2+ + D + eCD2 + D NM, = 2/3 R10 Total M for E < 1 eV, Ex (E>1 eV) neglect other channels 14 e- + CD2 CD2+ + 2 eFrom CD2 M(E<200eV) and CD4 for E> 200eV) 15 CD+ + D + 2 eM (CD2) 16 CD + D + eNM, = 1/2 R3 + + 17 e + CD2 CD + D + e NM, = 1/2 R16 + 18 CD + D + e NM = 1/2 R16 19 CD + D Total M (E < 1 eV) Ex (E>1eV) neglect other channels 20 e- + CD CD+ + 2 e- NM, adopted CD4 data 21 C + + D + 2 eNM total R21+R22 A=1/2 R9; R21=1/2 total 22 C + D+ + 2 eNM, total R21+R22 A= 1/2 R9; R22=1/2 total 23 C + D + eNM = 1/4 R3 + + 24 e + CD C +D +e NM = 1/2 R23 + 25 C + D + eNM = 1/2 R23 M = Measured, NM = Not Measured, Ex = Extrapolated, A = Assumed o PISCES - A (UCLA) experiments: A. Pospieszczyk, FZ-Juelich Spectroscopic arrangement Optical multi channel analyzer Reflex arc linear mirror plasma o Code - experiment comparison BBQ - Monte Carlo multi-species simulation ( Erhardt-Langer database) OMA ( A. Pospieszczyk, FZ-Juelich) CH axial density CH2 axial density 1.0 1.0 PISCES-A 13417 PISCES-A 13417 BBQ Rel. density Rel. density 0.5 0.5 BBQ 0 0 0 Nozzle location o Optical Multi-channel Analyzer (A. Pospieszczyk FZ-Juelich) 0 2 4 6 Downstream distance (cm) Nozzle location 2 4 6 Downstream distance (cm) Schematic diagram of experiment on Tore Supra Midplane Limiter (Phase II) o E Gauthier, A Cambe J Hogan et al J Nucl Mater 2003 o Model comparison using partial pressure - sensitivity to sputtering model LHCD: High Tsurf CD4 partial pressure CD emission 510 670 Tsurf(K) Increased production of CD4 with flux P CD4D0.73 PCD4 PD2 0.70 o JT-60U (N. Hosogane) 830 Deuteron impact charge exchange data [Alman, Ruzic] D+ + CnDm --> D + CnD4+ Reaction Product Rate Known -9 3 (10 cm /s) (total) CD4 D+ + CD4 D + CD4+ 1.880 4.150 D2 + CD3+ 1.880 D+ + CD3 D + CD3+ 1.800 + D2 + CD2 1.800 + + D + CD2 D + CD2 1.700 D2 + CD+ 1.700 D+ + CD D + CD+ 3.236 C2D2 D+ + C2D2 D + C2D2+ 2.250 6.300 + D2 + C2D 2.250 D+ + C2D D + C2D+ 4.358 o Heavy hydrocarbon production: dominant species from break-up of C2D2. BBQ calculation using Alman-Ruzic database C2 D2 o C2 D2 + C2 D+ C2 + Janev-Reiter database rates have been implemented in BBQ. A comparison, with the same background plasma conditions, for the Tore Supra pump limiter case, shows significant differences in comparison with the Erhardt-Langer rates Janev-Reiter profiles CH+ CH+ CH+ ne,LP= 2 1018 m-3 CH4 o Te,LP= 20 eV CH4 CH4 Te,LP= 10 eV Te,LP= 5 eV o ne,LP = 2 10 18 m-3 CH+ density E- L J-R Te LP = 20 eV 0.04 0.08 0.12 0.16 0.20 0.24 Axial distance (m) CH+ density E- L Te LP = 10 eV J-R 0.04 0.08 CH+ density 0.12 0.16 Axial distance (m) 0.20 0.24 E- L J-R o 0.04 0.08 Te LP = 5 eV 0.12 0.16 0.20 Axial distance (m) 0.24 Janev-Reiter profiles CH+ CH+ CH+ ne,LP= 6 1018 m-3 CH4 o Te,LP= 20 eV CH4 CH4 Te,LP= 10 eV Te,LP= 5 eV CH+ density ne,LP = 6 10 18 m-3 E- L J-R Te LP = 20 eV 0.04 0.08 0.12 0.16 Axial distance (m) 0.20 0.24 CH+ density E- L J-R 0.04 0.08 CH+ density 0.12 0.16 Te LP = 10 eV 0.20 0.24 Axial distance (m) E- L J-R Te LP = 5 eV 0.04 o 0.08 0.12 0.16 Axial distance (m) 0.20 0.24 01 00 02 DIII-D intrinsic impurities before/after new tile installation Some evidence of T-dependent 8 processes 11 03 04 12 Filterscope (schematic) 13 Carbon concentration (%) Edge RDP-1999 RDP-2000 0 3 Core 0 0.4 o 0.6 0.8 1.0 Time (s) 1.2 1.4 CASTEM-2000 simulation of time-dependent carbon generation from simulated DIII-D localized source Maximum T surf on heated surf ace 1200 C flux (1018 parts/cm2/s) 1.6 1400 1.2 800 600 1 mm Tsurf (K) 1000 400 2.5 mm 0.8 Chemical 0.4 200 NBI 0 0 1 2 3 Time (s) NBI 0 4 5 0 1 2 3 Time (s) 4 5 NBI 2.0 C flux (1018 parts/cm2/s) RES 1.6 1.0 Y @ t ~ 4s chem when T = 1010K max 0.6 NBI 0 0 o min Y = 1. 10 -2 chem 1 2 3 Time (s) 4 5 max Y = 0.14 chem o Semi-empirical model for ELM transport enhancement Green: ELM-affected region in the model 2 Red: C neutrals and ions Yellow: D neutrals ion ions ELM event 3 1 Transport time dependence (schematic) 1. Pre-ELM (barrier) 2. Strong enhancement (100 sec) ELM 3. Loss of barrier, 2 x pre-ELM value 4. reducing to pre-ELM value as barrier is re-established 4 time 3 Intra-ELM transport radial dependence (schematic) 1. barrier 2. enhancement toward SOL 3. SOL radial transport 2 edge / pedestal only, low-field side only 1 separatrix radius o C6+ density solps core C6+ density C6+() vs time, solps outboard mid-plane Separatrix HFS s e paratrix LFS s e par atr ix 0.005 0 Time Relative to ELM (s) C6+ density CER Nor maliz ed Radius = 0.81 0.90 0.94 0.96 0.99 Shot = 119434 0.12 Im purity Density C6+ density 0.10 0.08 0.06 0.04 0.02 ~ separatrix 0.00 0 Time Relativ e to ELM (s) o 0.005 0.01 DIII-D experimental: fast (CID) camera Modeling solps 5.0 / Eirene99 IPP-Garching/Greifswald, FZ-Juelich CIII 4650.1 evolution solps 'standard' model Roth et al 'annealing' model Inner leg pre-ELM detached during attached re-detaching after recovery of detachment CIII evolution: M Groth et al, J Nucl Mater 2003 o Solps simulation of CIII emission seen by 240par (lower divertor) camera W Meyer, M Fenstermacher, M Groth LLNL o QuickTime™ and a YUV420 codec decompressor are needed to see this picture. ELM heat flux mitigation by Injection of extrinsic impurities o Chemical sputtering of carbon materials due to combined bombardment by ions and atomic hydrogen W Jacob, C. Hopf, M. Schlüter, T. Schwarz-Selinger Max-Planck-Institut für Plasmaphysik Garching chemical sputtering yield (per ion) 10 N+2 1 He+ H+2 = 2 H+ 0.1 o Ar+ Ne+ 10 Flux ratio H/ion = 400 100 energy (eV) 1000 CONCLUSIONS Intrinsic (carbon) impurity sources play a key role in ITER, both as regards erosion and for tritium retention The ITER problem (addressed also by JET) requires a decision about the first wall material - carbon or an alternative Development of validated models for C generation, deposition and retention requires experimental comparison: this typically introduces multiple uncertainties; e.g., sputtering yield models vs hydrocarbon break-up rates ITER relevant experimental scenarios involve fast timescale ELM events, for which spectroscopy is an key tool The importance of hydrocarbon generation processes has been seen in many experiments, and thus a quantitative, evaluated, integrated model for break-up processes in the plasma is needed. o