Critical Design Review - University of Colorado Boulder

Download Report

Transcript Critical Design Review - University of Colorado Boulder

Blimpage
Critical
Blimpage Team:
Daniel McCabe
Design
Review
Nguyen Trinh
Joseph Brannan
David Wolpoff
Philip Grippi
System Overview
• Modular general-purpose drone controller
• Navigation, collision-detection, general
motor interfaces, data collection
• Zero-impact on system performance
– Lightweight, independently powered
What is the Blimpage
• Composed of six main modules:
–
–
–
–
–
–
General-purpose microcontroller network
Motor / servo controller
Position and heading monitoring
Collision-detection / alarm
Data collection
Off-module communication
Functional
Block Diagram
The Micros
MSP 430 F1232 Micro Controllers
Key Features:
Ultra Low Power:
300 μA (Active)
0.7 μA (Standby)
C-Programming
Interface
Master Functions
•
•
•
•
•
•
Arbitrates data transfers on i2c bus
Prioritize Data Transfers
Passes data among subsystems
Handle user-input objectives
Coordinate startups and shutdowns
Bleating
Master State Machine
• And Now Something
COMPLETELY
different.
90
80
70
60
50
40
30
20
10
0
East
West
North
1st 2nd 3rd 4th
Qtr Qtr Qtr Qtr
Master State Machine. Take 2
• Init
– Initialize all slaves.
• Query
– Check who has data
– Prioritize data
• Idle
– Handle ‘master’ tasks.
• Xfer
– Carry out all bus
transactions in priority
order.
Command Set
•
•
•
•
•
Initialization:
– From Master: “Are you alive and what is
your target type?”
– From Slave: “I am target type TARGET.”
Query Data:
– From Master: “Do you have data?”
– From slave: “I have data for TARGET, of
priority DATA”
Transfer Data:
– From Master: “Here is DATA from
TARGET”
– From slave: “Her is DATA for TARGET”
Objective Update:
– From Master: “New objective from
TARGET is DATA”
– From slave: “New objective for TARGET is
DATA”
Global Abort:
– From Master: “halt immediatly”
– From Slave: “They sky has fallen! Tell
everyone to halt”
•
•
•
•
•
Global Abort:
– From Master: “halt immediatly”
– From Slave: “They sky has fallen! Tell
everyone to halt”
Local Abort:
– From Slave: “I'm dead, go on without me”
Block Transfer:
– From Master: “I have DATA words from
TARGET”
– From slave: “I have DATA words for
TARGET”
– Master then reads DATA words from slave
and writes them to TARGET.
Debug Code:
– From slave: “Process debug info DATA”
Global Reset:
– From Master: “Reset yourself, and restart
operations.”
Modified
START:
SDA
2
ic
STOP:
Protocol
SDA
SCK
SCK
STT
STT
ADDRESS CYCLE:
i2c Functionality
• Fully compatible with standard i2c devices
• Added START pin for micro-controllers
• 7-bit address size
• 8-bit data size
• 16-bit word size: for large block transfers
Position and Heading Intro
• Detects position from digital compassHMR3100
• Detects heading from HMR3100 and two
accelerometers-ADXL3100
• Sends direction instruction to Motor
Controller Module via I2C bus
• Receives collision direction information via
I2C bus from Collision Detection Module
Position/Heading Block Diagram
HMR3100
Pos/Heading uC
Master uC
-
ADXL311
-
||
||
------------------------------------------------I2C BUS
------------------------------------------------||
||
Motor uC
Collision uC
Digital Compass HMR3100
•
•
•
•
•
•
•
5 degree Heading Accuracy, 0.5
degree Resolution
2-axis Capability
Uses 3.3 V DC Single Supply
Operation
Uses 9600 N.8.1 communication
for outputting binary data
Delivers output binary data to
UART of Positon/Heading uC
UART binary data converts into
decimal data for position’s degree
With output data of ADXL311,
sends direction instruction to motor
controllers module via I2C bus
HMR3100 Time Diagram
Continuous Mode: 2 Hz heading queries at 9600 baud rate
Calibration Mode:
Accelerometer ADXL311
•
•
•
•
•
•
•
Dual-axis accelerometer
Uses 5-V single-supply operation with
0.4 mA typical consumption
Uses Internal Low Pass Filter with
bandwidth of 10 Hz
Based on blimp’s average acceleration
of 5 (cm/s)/s, 50 mV (VPP) variation of
output voltage from ADXL311
Put the variation of output voltage
through an external LPF (MAX7490) of
2 Hz
Then scale the variation of output
voltage 7 times bigger from TLV2370
Op-amp
Then put the amplified variation output
voltage into the ADC10 in Pos/Heading
uC
ADXL3100 and Logic Block Diagram
ADXL311
MAX7490
---
TLV2370
------
LP Filter
Pos/Heading uC
-----
ADC10
ADXL311 and HMR3100 Schematic
Motor Control Intro
• Motor module uC receives direction instruction
over I2C bus from Position and Heading Module
• 4 uC logic level outputs are optically isolated from
H-Bridges – control 2 motors’ behavior
• uC logic level PWM signal is optically isolated
from Servo
• Two fans operate in forward or reverse
• Servo controls position of fans (up or straight)
• 3 V battery powers motors and servo
Motor Control Block Diagram
Motor uC
-------------------------|
| x2 H-Bridge Motor
x4 optical |
|
Drivers
isolators
|
|
-----
---|
-----
<-------
-----
-----
|
|
|
PWM
--------
signal
optical
isolator
^
|
Micro Servo
|
3 V Battery
-----
||
<---|
----------------------|
Motor Control Schematic
(A High - B Lo w)
R everse
( A Low - B H igh) Forwa rd
( Both Low or Both High) Stop
uC MTR header P3.4-7
1
2
3
4
L MT R CNTRL B P 3. 7
L MT R CNTRL A P 3. 6
R MT R CNT RL B P3.5
R MT R CNT RL A P3.4
R_M TR_CNTRL_B
Servo CNTRL header P2.4
uC_G ND
1
uC G ND
L_MTR_CNTRL_B
1
J27
S ERVO CNTRL P 2.4HEA DE R 1
J28
HEA DE R 1
uC GND header
uC_SERVO_CNTRL
R_M TR_CNTRL_A
L_MTR_CNTRL_A
J26
HEA DE R 4
J29
Q1
MO S FE T _I _EP _DG S
Q2
MO S FE T _I _EP _DG S
Dat e:
Document Number
1
W ednesday, September 29, 2004
Rev
2
S heet
9
of
10
R MO T O R
Q6
MO S FE T _E N_DG S
Q8
MO S FE T _E N_DG S
4
1
1
4
R_M TR_B_BRIDGE
R26
1500
1035
1/20W
1/20W
R27
3
2
2
U12
P C357N
3
R_M TR_A_BRIDGE
3
2
2
Motor Contr ol Board
S ize
A
4
1
1
4
3
T itle
R25
1500 1/20W
1035 1/20W
R24
R19
???
U11
P C357N
SERVO_DI ODE1
R22
R23
1500
1035
1/20W
1/20W
10uF
U14
R_M TR_DIODE2
Q7
MO S FE T _E N_DG S
C20
R_M TR_B_OPTO
Q5
MO S FE T _E N_DG S
R_M TR_A_OPTO
L MO TO R
MTR BATT header
HEA DE R 2
J30
1
2
MO T O R_SRVO _CNT
RL
3 header
Servo
U10
P C357N
R_M TR_DIODE1
R18
???
L_MTR_B_BRIDGE
U13
U9
P C357N
L_MTR_DIODE2
L_MTR_A_BRIDGE
4
3
10uF
L_MTR_B_OPTO
L_MTR_A_OPTO
L_MTR_DIODE1
R20
R21
1500 1/20W
1035 1/20W
C19
L_MTR
2
Q4
MO S FE T _I _EP _DG S
R_M TR
1
Q3
MO S FE T _I _EP _DG S
U8
P C357N
MOTOR_GND
MO T O R_VCC 1
2
R28
1035 1/20W
R29
1500 1/20W
HEA DE R 3
Motor Control State Machine
Collision Detection Intro
• Collision module uC cycles through 6 channels on Mux/Demux using
binary addressing
• Vcc enable signal multiplexed to 6 Voltage Regulators which power 6
distance sensors (limits power consumption)
• Distance sensor outputs de-multiplexed into LPF
• LPF output sampled by uC’s ADC10
• Collision status register and priority flag updated
• Collision direction information passed over I2C bus to positioning and
heading module
• 5 V regulated voltage powers module components
|
Collision Detection Block
Diagram
| -------------------------------- |
Mux/Demux
>---|
---Vcc |
6x Voltage Regulators --<
<-------|
-<
|
<-------|
|
^
| ^^
| | Channel select
-------------------|
|
>----
--
6x Collision Sensors
power
output
LP Filter
Collision uC Slave
Collision Detection Schematic
U19
1
C32 2 OUT
CAP PO
3 L NC
4 GND
NC4
+
Opto uCJ37
header
J36
uC A0
uC A1
uC A2
SENSE
1
2
3
4
1
2
OPTO_V5
OPTO_G ND
U20
IN
NC7
NC6
SHDN
8
7
6
5
C26
CAP NP
1
C34 2 OUT
CAP PO
3 L NC
4 GND
NC4
+
LT1121-3. 3
R34
10k
U18
IN
NC7
NC6
SHDN
8
7
6
5
C28
CAP NP
+
LT1121-3. 3
R35
10k
HEADER
J38
2
1
IN
NC7
NC6
SHDN
+
OPTO_15K_CLK
C33 1
CAP2POOUT
L
3 NC
4 GND
NC4
D1 HEADER 1
IN
NC7
NC6
SHDN
8
7
6
5
C27
CAP NP
+
1
C35 2 OUT
CAP3PONC
L
4 GND
NC4
U23
IN
NC7
NC6
SHDN
8
7
6
5
C29
CAP NP
+
1
C37 2 OUT
CAP3PONC
L
4 GND
NC4
LT1121-3. 3
Opto Sensor header
LT1121-3. 3
IN
NC7
NC6
SHDN
LT1121-3. 3
R39
10k
R38
10k
R37
3.3V Zener
J32
10k
OPTO_VCC1
OPTO_VCC2
OPTO_VCC3
OPTO_VCC4
OPTO_VCC5
OPTO_VCC6
2nd Order LPF Filter 2
2
4
6
8
10
12
14
1
3
5
7
9
11
13
U17
LPA
LPB
BPA
BPB
NA/HPANB/HPB
INVA
INVB
SA
SB
SHDN
COM
GND EXT CLK
VDD
CLK
16
15
14
13
12
11
10
9
HEADER 7X2
U15
MUX/DEMUX
OPTO_S 5B
OPTO_S 6B
OPTO_S 4B
C22
0.1uF
1
2
3
4
5
6
7
8
MAX7490_QSOP
R30
10K
R31
10K
C21
0.1uF
C23
0.1uF
OPTO_I NVA
C30
CAP NP
U21
R33
10k
OPTO_LPA
OPTO_BPA
OPTO_HPA
8
7
6
5
LT1121-3. 3
R36
10k
U22
HEADER 4
1
C36 2 OUT
CAP3PONC
L
4 GND
NC4
C24
0.1uF
R32
10K
OPTO_S2B
OPTO_S1B
1
2 VDD
3 DB
4 RS
5 S8B
6 S7B
7 S6B
8 S5B
OPTO_S3B
9 S4B
10 S3B
11 S2B
12 S1B
13 GND
14 W R
NC
DA
VSS
S8A
S7A
S6A
S5A
S4A
S3A
S2A
S1A
EN
A0
A1
A2
28
27
26
25
24
23
22
21
20
19
18
17
16
15
ADG527AKR_28L_SOIC
OPTO_DA
OPTO_RX1
OPTO_RX2
OPTO_RX3
OPTO_RX4
OPTO_RX5
OPTO_RX6
8
7
6
5
C31
CAP NP
Collision Detection State Machine
Module State Machine
Communications
• Enables communication with “outside”
world.
• RS232 protocol, via MAX3233.
• Reads data from Master and outputs it to
host PC for interpretation.
• Reads data from host and outputs it to
Master.
• Enables debugging, etc.
Data Acquisition
• Servo Motorized ‘message’ deployment
• Delivers messages discreetly and accurately.
• Camera scrapped for blimp due to weight
constraints.
• (Time Permitting) JamCam camera will be
deployed on R/C Car
– RS232 communication
– Documented protocol
• (Time Permitting) Audio/Temperature/Humidity
Sensors
Parts List
•
Motor Control
–
–
–
–
–
•
Collision Detection
–
–
–
–
–
•
1 ADG527A Analog Devices Multiplexer
1 MAX7490 Maxim Dual Universal Switched Capacitor Filter
6 LT1121-3.3 Linear Technology Micropower Low Dropout Regulators with Shutdown
6 GP2D12 Sharpe General Purpose Type Distance Measuring Sensors
1 Diodes Incorporated Surface Mount 3.3V Zener Diode
Positioning and Heading
–
–
•
4 Zetex 20V N-Channel MOSFETs
4 Zetex 20V P-Channel MOSFETs
5 NEC High Isolation Voltage SOP Photocouplers
2 small DC fan motors
1 4.7 g Cirrus Micro Servo
1 HMR3100 Honeywell Digital Compass Solution
1 ADXL311 Analog Devices Low Cost, Ultra-compact +-2g Dual Axis Accelerometer
1 MAX7490 Maxim Dual Universal Switched Capacitor Filter
Parts List 2
•
Master
– 6 MSP430F1232 Microcontrollers
– 1 Clock in a Box
– 1 TPS61100 Switching boost converter
•
Communal
– Various Resistors
– Various Capacitors
– Various Inductors
•
•
Assorted PCB’s
Blimp
Costs (The Big Stuff)
•
•
•
•
•
•
•
•
•
Microcontrollers: $40.00 x 3 revisions = $120.00
Compass: $100.00
Infrared Rangefinders: $60.00
PCB’s $80 x 3 revisions = $240.00
Blimp $100.00
Programming tool: $200.00
Assorted DigiKey purchases: $300.00
Total Costs: $1120.00
Sanity: Priceless (but absent)
ROI
• Projected Development Cost: $1200.00
• Projected Production Cost at Volume:
$500.00
• Projected Cost to consumer: $5000.00
(including support)
• Projected Sales: 10,000 units.
• ROI: $45,000,000
Updated Schedule
Division of Labor
• Master / Slave system (i2c)
– Dave, Dan
• Communication Module
– Dave, Phil
• Motor Control, Collision Detection
– Joe
• Position / Heading
– Nguyen
• Data Collection Module
– Phil, Dan
Division of Labor
• Group Tasks
– Documentation
– PCB Population
– Systems Integration
– Review and Testing
Milestone 1
• Airborne Blimp
• Final Testing
– Collision
– Motor
• Basic functionality
– Pos/Head
– Comms
– Data Acq.
Milestone 2
• Significant Blimp Maneuverability
• Basic testing on R/C Car
• All modules completed and in testing
• Basic user interface (for destination data)
Expo
• All systems fully implemented and tested
• Documentation Complete
– User’s Manual
– Technical Manual
• Happy Jack