Universidad Carlos III de Madrid

Download Report

Transcript Universidad Carlos III de Madrid

Mobile Robotics Teaching Using Arduino
and ROS
R. Vilches, I. Martínez, M. L. González, Crespo, J. and Barber, R.
RoboticsLab. Systems Engineering and Automation Department.
7th International Conference of Education, Research and Innovation. ICERI 2014.
(Seville - 17th-19th November 2014)
Contents
1. Introduction and Objectives
2. Robotic platform: Hardware Components
3. Robotic platform: Software Components
4. Control Architecture
5. Experimental Results
6. Conclusions and Future Work
Universidad Carlos III
de Madrid
Contents
1. Introduction and Objectives
2. Robotic platform: Hardware Components
3. Robotic platform: Software Components
4. Control Architecture
5. Experimental Results
6. Conclusions and Future Work
Universidad Carlos III
de Madrid
1. Introduction and Objectives
• Develop a low cost platform designed for
mobile robotics teaching.
• Provide a sensor platform with environmental
modeling capability.
• Test map generation for robot navigation.
Universidad Carlos III
de Madrid
1. Introduction and Objectives
• Build a mobile robot with wheel differential
system based on Arduino.
• Communicate remotely through ROS nodes.
• Get a map of the environment using OpenCV
libraries.
Universidad Carlos III
de Madrid
Contents
1. Introduction and Objectives
2. Robotic platform: Hardware Components
3. Robotic platform: Software Components
4. Control Architecture
5. Experimental Results
6. Conclusions and Future Work
Universidad Carlos III
de Madrid
2. Robotic Platform: Hardware
• Micro servo-motor TowerPro SG90
• 3-Axis magnetometer HMC5883L
• 2 infrared sensors SHARP GP2D12
• 2 DC motors
Universidad Carlos III
de Madrid
2. Robotic Platform: Hardware
• Battery and switch
• Encoders and H-bridge regulator
• Arduino Mega 2560 (16MHz, 256KB)
• Mega SensorShield V1.0
Universidad Carlos III
de Madrid
Contents
1. Introduction and Objectives
2. Robotic platform: Hardware Components
3. Robotic platform: Software Components
4. Control Architecture
5. Experimental Results
6. Conclusions and Future Work
Universidad Carlos III
de Madrid
3. Robotic Platform: Software
• Arduino platform (hardware and software):
• Open: Great community
• Flexible: Multiple Applications
• Easy to use: Based Programming C / C ++
• Low processing power and memory
Universidad Carlos III
de Madrid
3. Robotic Platform: Software
• ROS: Robotic Operating System:
• Distributed: Graph architecture
• Nodes:
• Publishing and subscribing
to messages
• Services
• Packages
Universidad Carlos III
de Madrid
Contents
1. Introduction and Objectives
2. Robotic platform: Hardware Components
3. Robotic platform: Software Components
4. Control Architecture
5. Experimental Results
6. Conclusions and Future Work
Universidad Carlos III
de Madrid
4. Control Architecture
• Global architecture scheme
Universidad Carlos III
de Madrid
4. Control Architecture
• PC - ROS:
• Serial Node
• Map Node
• Position Callback
• irLecture Callback
• Wander Node
• Service Callback
Universidad Carlos III
de Madrid
4. Control Architecture
• Arduino:
• ROS
• Encoder
• HMC5883L
• Move
Universidad Carlos III
de Madrid
4. Control Architecture
• Main functionality flow diagram • Loop tasks flow diagram
Universidad Carlos III
de Madrid
4. Control Architecture
• Environment scanning flow diagram (makeDistance):
Universidad Carlos III
de Madrid
4. Control Architecture
• Mapping routine flow diagram (mappingRoutine):
Universidad Carlos III
de Madrid
4. Control Architecture
• Translation
flow diagram
(makeMove):
Universidad Carlos III
de Madrid
Contents
1. Introduction and Objectives
2. Robotic platform: Hardware Components
3. Robotic platform: Software Components
4. Control Architecture
5. Experimental Results
6. Conclusions and Future Work
Universidad Carlos III
de Madrid
5. Experimental Results
• Map Node – IrLecture
• Depiction
• Robot
Universidad Carlos III
de Madrid
• Obstacles
5. Experimental Results
• ROS & Arduino
• ROS architecture working.
• Nodes: Serial + Map+ Wander
• Arduino management
Universidad Carlos III
de Madrid
5. Experimental Results
• Field tests
• Mapping a corridor
• IR Reading errors
• Solution:
• Obtain the median from
multiple readings
• Increase the thickness
of the lines  Fix errors quickly
Universidad Carlos III
de Madrid
5. Experimental Results
• Field tests (II)
• Creation of a specific stage
• The longer the mapping lasts:
• The bigger the error can be accumulated.
• The better the resulting depiction (debugging)
Universidad Carlos III
de Madrid
5. Experimental Results
• Field tests (III)
• Mapping a home hallway:
• Consistent result
• Long time scanning
Universidad Carlos III
de Madrid
Contents
1. Introduction and Objectives
2. Robotic platform: Hardware Components
3. Robotic platform: Software Components
4. Control Architecture
5. Experimental Results
6. Conclusions and Future Work
Universidad Carlos III
de Madrid
6. Conclusions and future work
• Result of a user-friendly robotics platform approach
to teaching.
• Joint use of Arduino and ROS.
• Achieve map generation and autonomous robot
navigation.
Universidad Carlos III
de Madrid
6. Conclusions and future work
• Hardware:
• Bluetooth connection.
• Ultrasonic sensor.
• Robotic applications:
• Mapping
• SLAM
• Other navigation applications
Universidad Carlos III
de Madrid
Mobile Robotics Teaching Using Arduino
and ROS
R. Vilches, I. Martínez, M. L. González, J. Crespo, and R. Barber
RoboticsLab. Systems Engineering and Automation Department.
7th International Conference of Education, Research and Innovation. ICERI 2014.
(Seville - 17th-19th November 2014)