Transcript Chapter 3
Chapter 4 Using Regression to Estimate Trends Trend Models Linear trend, Y time t t Quadratic trend Yt 1 time 2 time t 2 Cubic trend Yt 1 time 2 time 3 time t 2 Exponential trend Yt 0 exp( 1time) t 3 Choosing a trend Plot the data, choose possible models Use goodness of fit measures to evaluate models Try to Minimize the AIC and SBC Choose a model Mean Squared Error T MSE 2 et t 1 T et yt yˆ t yt ˆ0 ˆ1timet Goodness of Fit Measures Coefficient of Determination or R2 R 1 2 e y 2 t yt 2 t Goodness of Fit Measures Adjusted R2 R 1 2 e y t 2 /(T k ) yt /(T 1) 2 t AIC and SBC T 2 et t 1 2k log( AIC ) log T T T 2 et t 1 k log(T ) log(SIC ) log T T AIC and SBC(continued) Choose the model that minimizes the AIC and SIC Examples choose AIC=3 over AIC=7 choose SIC=-7 over SIC=-5 The SIC has a larger penalty for extra parameters! F-Test The F-test tests the hypothesis that the coefficients of all explanatory variables are zero. A p-value less than .05 rejects the null and concludes that our model has some value. ˆ Y /(k 1) Y F ~F ˆ /(n k ) Y Y 2 t t 2 t t k ,n k Testing the slopes T-test tests a hypothesis about a coefficient. A common hypothesis of interest is: H0 : 0 HA : 0 Steps in a T-test 1. Specify the null hypothesis 2. Find the rejection region 3. Calculate the statistic 4. If the test statistic is in the rejection region then reject! Figure 5.1 Student-t Distribution f(t) () /2 -tc 0 /2 tc t red area = rejection region for 2-sided test An Example,n=264 f(t) .025 -1.96 .9 5 0 .025 1.96 t red area = rejection region for 2-sided test LS // Dependent Variable is CARSALES Date: 02/17/98 Time: 13:44 Sample: 1976:01 1997:12 Included observations: 264 Variable Coefficient Std. Error t-Statistic Prob. C 13.10517 TIME 0.000882 TIME2 2.52E-05 0.311923 0.005479 2.02E-05 42.01413 0.160947 1.248790 0.0000 0.8723 0.2129 R-squared 0.107295 Adjusted R-squared 0.100454 S.E. of regression 1.702197 Sum squared resid 756.2412 Log likelihood -513.5181 Durbin-Watson stat 0.370403 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic) 13.80292 1.794726 1.075139 1.115774 15.68487 0.000000 Using our results Plugging in our estimates: .000882 0 t .1609 .005479 Not in the rejection region, don’t reject! P-Value=lined area=.8725 f(t) .025 -1.96 .9 5 0 .025 1.96 t .016 red area = rejection region for 2-sided test Ideas for model building F-stat is large, p-value=.000000 implies our model does explain something “Fail to reject” does not imply accept in a t-test Idea, drop one of the variables LS // Dependent Variable is CARSALES Date: 02/17/98 Time: 14:00 Sample: 1976:01 1997:12 Included observations: 264 Variable Coefficient Std. Error t-Statistic Prob. C TIME 0.209155 0.001376 61.27481 5.454057 0.0000 0.0000 0.101961 0.098533 1.704014 760.7597 -514.3044 0.368210 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic) 12.81594 0.007506 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat 13.80292 1.794726 1.073520 1.100611 29.74674 0.000000