Transcript Slide 1
POLYMERIZATION PROCESS HOMOGENEOUS SYSTEM BULK POLYMERIZATION SOLUTION POLYMERIZATION HETEROGENEOUS SYSTEM SUSPENSION POLYMERIZATION EMULSION POLYMERIZATION PRECIPITATION POLYMERIZATION INTERFACIAL AND SOLUTION POLYCONDENSATIONS In a homogeneous polymerization process, all reactants, including monomers, initiators, and solvents, are mutually soluble and compatible with the resulting polymer. initiator monomer • Monomer, initiator, and polymer are miscible • Generally exothermic • The higher the conversion, the higher the viscosity E-1 polymer not very exothermic reactants are usually of low activity Step-growth polymerization high temperatures are required • Low viscosity at the beginning • high viscosities at later stages of the reaction • problems with the removal of volatile byproducts • a possible change in the kinetics of the reaction from a chemical-controlled regime to a diffusion-controlled one. • Low heat capacity • Low thermal conductivity • extremely viscous reaction media • Low overall heat transfer coefficient • Development of localized hot spots • Runaway reactions • Degradation of polymer product • Broadened mole weight distribution • Because of the above heat transfer problems, bulk polymerization of vinyl monomers is restricted to those with relatively low reactivities and enthalpies of polymerization. • This is exemplified by the homogeneous bulk polymerization of methyl methacrylate and styrene (see the following Table). • Some polyurethanes and polyesters are examples of step-reaction polymers that can be produced by homogeneous bulk polymerizations. • The products of these reactions might be a solid, as in the case with acrylic polymers; a melt, as produced by some continuous polymerization of styrene; or a solution of polymer in monomer, as with certain alkydtype polyesters. To overcome the problems, the process is carried out in two stages: Stage I Prepolymerization or polymerization initiation stage, which is often carried out in a short period (5 – 10 minutes) resulting syrup (low degree of polymerization and low viscosity) Tahap II Polymerization stage, which is often carried out in a mold resulting solid polymer in a relatively long period. • Another way of circumventing the heat transfer problems is by continuous bulk polymerization. • An example is the polymerization of polystyrene, which is carried out in two stages. • In the first stage, styrene is polymerized at 80°C to 30 to 35% monomer conversion in a stirred reactor known as a prepolymerizer. • The resulting reaction mass — a viscous solution or syrup of polymer in monomer — subsequently passes down a tower with increasing temperature. • The increasing temperature helps to keep the viscosity at manageable levels and also enhances conversion, which reaches at least 95% at the exit of the tower. • By removal of the heat of polymerization at the top of the tower and proper temperature control of the finished polymer at the bottom of the tower, an optimum molecular weight may be achieved and channeling of the polymer may be minimized. Vertical column reactor for the continuous bulk polymerization of styrene • Bulk polymerization is ideally suited for making pure polymeric products, as in the manufacture of optical grade poly(methyl methacrylate) or impact-resistant polystyrene, because of minimal contamination of the product. • However, removal of the unreacted monomer is usually necessary, and this can be a difficult process. • This may be achieved in vacuum extruders where the molten polymer is extruded under vacuum to suck off the residual monomer. Bulk Polymerization is generally more suitable for step-growth polymerization than chain-growth polymerization because: • The major problems in bulk polymerization are heat removal and mixing. • H condensation polymerization (2 – 6 kkal/kg) < H addition polymerization (15 – 20 kkal/kg). • Even at low conversion, viscosity of product of addition polymerization > condensation polymerization. • All the problems leads to much lower heat transfer coefficient in chain-growth polymerization than in step-growth polymerization. solvent catalyst monomer initiator • Monomer, initiator, catalyst, and resulting polymer are soluble in the solvent • Exothermic E-1 Solution • The higher the conversion, the higher the viscosity • In solution polymerization, the monomer, initiator, and resulting polymer are all soluble in the solvent. • Solution polymerization may involve a simple process in which a monomer, catalyst, and solvent are stirred together to form a solution that reacts without the need for heating or cooling or any special handling. • On the other hand, elaborate equipment may be required. • For example, a synthetic rubber process using a coordination catalyst requires rigorous exclusion of air (to less than 10 ppm); moisture; carbon dioxide; and other catalyst deactivators from the monomer, solvent, and any other ingredient with which the catalyst will come in contact before the reaction. • In addition, exclusion of air prevents the tendency to form dangerous peroxides. • To avoid product contamination and discoloration, materials of construction also need to be selected with the greatest care. • Polymerization is performed in solution either batchwise or continuously. • The batch may be mixed and held at a constant temperature while running for a given time, or for a time dictated by tests made during the progress of the run. • A continuous reaction train, consists of a number of reactors, usually up to about ten, with the earlier ones overflowing into the next and the later ones on level control, with transfer from one to the next by pump. • As the reaction progresses, solution polymerization generally involves a pronounced increase in viscosity and evolution of heat. • The viscosity increase demands higher power and stronger design for pumps and agitators. • The reactor design depends largely on how the heat evolved is dissipated. • Reactors in solution polymerization service use jackets; internal or external coils; evaporative cooling with or without compression of the vapor or simple reflux-cooling facilities, a pumped recirculation loop through external heat exchanger; and combinations of these. ADVANTAGES OF SOLUTION POLYMERIZATION • The catalyst is not coated by polymer so that its efficiency is sustained and removal of catalyst residues from the polymer, when required, is simplified. • Solution polymerization is one way of reducing the heat transfer problems encountered in bulk polymerization. • The solvent acts as an inert diluent, increasing overall heat capacity without contributing to heat generation. • By conducting the polymerization at the reflux temperature of the reaction mass, the heat of polymerization can be conveniently and efficiently removed. • Furthermore, relative to bulk polymerization, mixing is facilitated because the presence of the solvent reduces the rate of increase of reaction medium viscosity as the reaction progresses. DRAWBACKS OF SOLUTION POLYMERIZATION • The solubility of polymers is generally limited, particularly at higher molecular weights. • Lower solubility requires that vessels be larger for a given production capacity. • The use of an inert solvent not only lowers the yield per reactor volume but also reduces the reaction rate and average chain length since these quantities are proportional to monomer concentration. • The necessity of selecting an inert solvent to eliminate the possibility of chain transfer to the solvent. • The solvent frequently presents hazards of toxicity, fire, explosion, corrosion, and odor problems not associated with the product itself. • Solvent handling and recovery and separation of the polymer involve additional costs, and removal of unreacted monomer can be difficult. Complete removal of the solvent is difficult in some cases. • With certain monomers (e.g., acrylates) solution polymerization leads to a relatively low reaction rate and low-molecular-weight polymers as compared with aqueous emulsion or suspension polymerization. • The problem of cleaning equipment and disposal of dirty solvent constitutes another disadvantage of solution polymerization. COMMERCIAL USE • Solution polymerization finds ready applications when the end use of the polymer requires a solution, as in certain adhesives and coating processes [i.e., poly(vinyl acetate) to be converted to poly(vinyl alcohol) and some acrylic ester finishes]. • Solution polymerization is used widely in ionic and coordination polymerization. • High-density polyethylene, polybutadiene, and butyl rubber are produced this way. Typical Solution-Polymerization Processes Notes: a For example, 1,3-butadiene or isoprene b Includes hexane, heptane, an olefin, benzene, or a halogenated hydrocarbon. Must be free from moisture, oxygen, and other catalyst deactivators. c TiCl4, an aluminium, alkyl, and cobalt halide are reported to be used to make meripol CB cis-polybutadiene. d In the transesterification step, inorganic salts, alkali metals or their alkoxides, or Cu, Cr, Pb, or Mn metal are used. In the next step, the catalyst is not disclosed. e Isotactic polymers are not usually formed completely in solution but precipitate in the course of reaction. f Amines, cyclic nitrogen compounds, arisine, stibine, or phosphine. initiator monomer • Monomer dan initiator saling larut • Polimer tidak larut dalam sisa monomer, • Biasanya eksotermis E-1 monomer polymer • Semakin besar konversi, semakin tinggi viskositasnya CONTOH The high pressure free radical process for the manufacture of Low Density Polyethylene initiator ethylene T = 200 – 280C P = 1000 – 3000 atm E-1 ethylene polyethylene Supercritical • Polyethylene membentuk cabang karena proses selfbranching. • Cabang yang lebih panjang dari metil tidak dapat masuk ke kisi kristal polyethylene, sehingga polimer padat yang dihasilkan kurang bersifat kristal (tidak transparan) dan lebih kaku daripada HDPE (0.9350.96 g cm-3) yang dibuat dengan reaksi coordination polymerization solven katalis monomer inisiator • Monomer, initiator, dan katalis larut dalam solven, • Polimer tidak larut dalam larutan • Ekotermis • Semakin besar konversi, semakin tinggi viskositasnya E-1 Larutan polimer Langkah-langkah proses polimerisasi slurry: 1. Langkah penyiapan katalis. Katalis yang pada umumnya berupa padatan, diproduksi sedemikian rupa sehingga tidak ada air dan oksigen pada katalis. 2. Langkah polimerisasi Reaksi polimerisasi dilakukan pada P < 50 atm dan T < 110C (untuk menghidari larutnya polimer) sehingga terbentuk slurry dengan konsentrasi polimer 20% dalam diluen cairan alifatik (misal propylene, dalam pembuatan polypropylene). 3. Recovery polimer: Langkah ini dilakukan dengan cara stripping terhadap diluen, pencucian untuk menghilangkan sisa katalis, dan ekstraksi komponen polimer yang tak dikehendaki (jika perlu). 4. Langkah “compounding”: Langkah ini bertujuan untuk mencampur berbagai macam stabilizer dan bahan aditif dengan lelehan polimer, yang kemudian diikuti dengan pendinginan dan pembentukan pellet. • Jika konsentrasi katalis sangat kecil, maka langkah penghilangan katalis dapat diabaikan. • Konversi biasanya lebih tinggi dibandingkan dengan free-radical, high-pressure polymerization process, sehingga lebih sedikit monomer yang harus direcycle. • Temperatur reaksi pada proses slurry dapat dikontrol dengan me-reflux solven. Dispersing agent inisiator monomer air • Monomer dan initiator tidak larut dalam solven, • Polimer tidak larut dalam larutan • Ekotermis E-1 Polimer tersuspensi • Semakin besar konversi, viskositas relatif tidak berubah. Peran air: 1. Media transfer panas. 2. Menjaga viskositas media reaksi tetap rendah. Dalam polimerisasi vinyl chloride : (CP)monomer = (CP)polimer = ¼ (CP)air Rasio air/monomer : 1,5/1 – 1,75/1 Inisiator Senyawa peroxide Benzoyl peroxide Diacetyl peroxide Lauryl peroxide t-butyl-peroxides Senyawa azo Senyawa ionik Azo-bisisobutyronitrile (AIBN) aluminum alkyl antimony alkyl titanium chloride chromium oxides Jumlah katalis : 0.1 – 0.5% dari berat monomer Apa yang terjadi dalam tetesan monomer? 0% 10 – 20% 75 – 80% Encer Kental Lengket Padatan Tidak lengket Masalah utama Aglomerasi (terutama pada tahap dimana tetesan menjadi kental dan lengket) Pengadukan Stabilizing agent Stabilizing agent Surface-active agents (surfactants) Garam dari asam lemak, MgCO3 , CaCO3 Ca3(PO4)2 TiO, Al2O3 Polimer yang larut dalam air gelatin, methyl cellulose, poly(vinyl alcohol), starches, gums, dan poly(acrylic acids) beserta garamnya Jumlah stabilizing agent: 0,01 – 0,5% dari berat monomer Diagram alir polimerisasi suspensi untuk pembuatan PPMA • Dalam polimerisasi suspensi, monomer + inisiator yang terlarut didispersikan dalam bentuk tetesan kecil ke dalam air yang mengandung sedikit suspension agent. • Begitu polimerisasi berlangsung, tetesan monomer berubah menjadi kental dan lengket. • Hasil akhir reaksi mengandung polimer 25-50% yang terdispersi dalam air. • Koagulasi dari dispersi dikontrol dengan pengadukan dan bantuan stabilizing agent. • Jika polimerisasi sudah selesai, suspensi polimer dialirkan ke blowdown tank atau stripper untuk memisahkan sisa monomer. • Slurry dipompa ke centrifuge atau filter untuk menyaring, mencuci, dan mengeringkan polimer. • Polimer basah (30% air) dikeringkan dengan udara hangat (66 to 149°C) dalam dryer. • Polimer kering dikirim ke storage. REAKTOR • Bentuk reaktor umumnya tangki vertikal berpengaduk yang terbuat dari stainless steel atau glass-lined carbon steel. • Reaktor dilengkapi dengan pengaduk (tipe paddle atau anchor) dengan 20 – 60 rpm. • Yang perlu diperhatikan adalah kontrol temperatur. REAKTOR STAINLESS STEEL • Perpindahan panas bagus • Masalah fouling GLASS-LINED CARBON STEEL • Perpindahan panas kurang • Tidak ada fouling Reaksi eksotermis Kontrol temperatur sangat penting Reaktor dengan jaket Reaktor dengan baffle Hati-hati! Dead volume Sistem refrijerasi • Jika ukuran reaktor berjaket diperbesar, timbul masalah luas perpindahan panas. • Luas perpindahan panas tidak berbanding lurus dengan volume reaktor. • Untuk tangki silinder, pertambahan luas perpindahan panas jaket sebanding dengan kenaikan volume dipangkatkan 0,67. Untuk L = D: D12L1 D13 V1 4 4 D22L2 D23 V2 4 4 A1 D1L1 D12 A2 D2L2 D22 A2 D2 D2 A1 D1 D1 2 V2 V1 D23 D13 A2 A1 D22 D12 3 23 V2 V1 4 D2 4 D1 D2 D1 23 2 3 Dispersi monomer 1 m – 0,5 cm Reaktor mini Keuntungan polimerisasi suspensi: 1. Penggunaan air sebagai media pertukaran panas lebih ekonomis daripada solven organik. 2. Dengan nilai CP yang besar, pengambilan panas reaksi lebih efektif dan kontrol terhadap temperatur menjadi lebih mudah. 3. Pemisahan dan penanganan polimer lebih mudah daripada polimerisasi emulsi dan larutan. 4. Produk lebih mudah dimurnikan. Polimerisasi suspensi paling banyak digunakan untuk memprodukasi resin plastik: • Semua jenis resin termoplastik • Polystyrene, • Polymethyl methacrylate, • Polyvinyl chloride, • Polyvinylidene chloride, • Polyvinyl acetate, • Polyethylene, • Polypropylene Komposisi dan kondisi reaksi beberapa sistem polimerisasi suspensi CONTOH SOAL Mengapa penggunaan coil pendingin dalam reaktor untuk polimerisasi suspensi tidak dianjurkan? PENYESAIAN: Masalah utama dalam reaktor untuk polmerisasi suspensi adalah terbentuknya kerak polimer. Jika kerak terbentuk di antara coil-coil pendingin, maka pembersihannya akan sangat sulit. • Polimerisasi emulsi saat ini banyak dimanfaatkan secara komersial untuk memproduksi berbagai jenis polimer. • Polimer yang dibuat dengan proses ini addition polymer dan memerlukan inisiator radikal bebas. Pada umumnya, sistem polimerisasi emulsi terdiri atas : • monomer, • dispersing medium, • emulsifying agent, • Inisiator yang larut dalam air, • transfer agent. Distribusi Komponen Contoh resep polimerisasi emulsi: • 180 bagian (b) air, • 100 bagian (b) monomer, • 5 bagian (b) sabun (emulsifying agent), • 0.5 bagian (b) of potassium persulfate (inisiator yang larut dalam air). Bagaimana komponen-komponen ini terdistribusi dalam sistem? Sabun adalah garam Na atau K dari asam organik, seperti sodium stearate: O [CH3 (CH2)16 C O–] Na+ R Jika sejumlah kecil sabun dimasukkan ke air, maka akan terionisasi: O [CH3 (CH2)16 C O–] Na+ O [CH3 (CH2)16 C O–] + Na+ Anion sabun terdiri dari bagian yang tak larut dalam air (R) yang berupa rantai panjang, dan diakhiri oleh bagian yang larut dalam air. O [CH3 (CH2)16 C O–] Hydrophobic group Hydrophilic group First addition of surfactant More addition of surfactant More addition of surfactant Surfactant dissolves in the bulk and form an adsorption film at the air/water interface colloidal particles The micelles remain in dynamic equilibrium with the soap molecules dissolved in water Micelle bentuk batang 2 panjang molekul sabun 50 – 100 molekul sabun Micelle bentuk bola Jika monomer yang tidak larut/sedikit larut dalam air diemulsikan dalam air dengan bantuan sabun dan pengadukan, maka akan terbentuk tiga fasa: • Fasa air dengan sedikit sabun dan monomer yang terlarut. • Tetesan monomer yang teremulsikan. • Micelle (monomer-swollen micelles). • Diameter tetesan monomer : 1 μm. • Ukuran butiran sangat dipengaruhi oleh kecepatan pengadukan. • Konsentrasi micelle: 1018 micelle per ml • Konsentrasi tetesan monomer: 1010 – 1011 per ml. Contoh diagram alir polimerisasi emulsi Pembentukan agregat dalam air sangat tergantung pada beberapa faktor: • Konsentrasi surfactant • Temperatur • Kekuatan ion • Keberadaaan molekul lain LOKASI POLIMERISASI Jika inisiator yang larut dalam air, seperti potassium persulfate, ditambahkan ke sistem polimerisasi emulsi, maka senyawa tersebut akan mengalami dekomposisi termal menjadi anion radikal sulfat: S2O8– panas 2 SO4– Anion radikal yang larut dalam air akan bereaksi dengan monomer terlarut dalam fasa air membentuk radikal bebas tipe sabun: SO4– 50 – 60C + (n + 1) M – S2O4– (CH2 – CX2)n – CH2 – CX2 Lokasi polimerisasi Alasan mengapa reaksi polimerisasi terjadi dalam micelle: (1) Dimensi micelle 50 – 100 Å sementara tetesan monomer > 1 μm (10,000 Å). Karena rasio luas permukaan/volume bola adalah 3/R, maka micelle memiliki luas pemukaan yang lebih besar. (2) Konsentrasi micelles lebih tinggi daripada tetesan monomer (1018 vs. 1011 per cm3). Tiga tahap polimerisasi Sebelum inisiasi: • Dispersing medium, biasanya air, yang mengandung sedikit sabun (emulsifier) dan monomer. • Tetesan monomer dengan ukuran 10.000 Å terpisah akibat stabilisasi oleh molekul emulsifier. • Konsentrasi tetesan monomer 1010–1011 per ml. • Jika CMC terlampaui, 50 –100 molekul emulsifier akan membentuk micelle yang berbentuk bola dengan ukuran 40 – 50 Å; • Beberapa micelles terisi oleh lebih banyak monomer dan memiliki ukuran 50 – 100 Å; • Konsentrasi micelle 1018 per ml. • Tegangan permukaan rendah karena adanya sufactant. TAHAP I (konversi 12–20%): STAGE II (25 – 50% conversion): • Konsentrasi molekul monomer terlarut menjadi kecil. • Tidak ada emulsifier terlarut. • Polimerisasi hanya terjadi dalam partikel monomer-swollen polymer (latex) melalui difusi monomer dari tetesan monomer. • Partikel polimer tumbuh, sementara ukuran tetesan monomer berkurang. • Tidak ada inti partikel baru (jumlah partikel latex konstan), dan karena konsentrasi monomer konstan, maka kecepatan polimerisasi juga konstan. • Akhir dari tahap ini ditandai dengan hilangnya tetesan monomer. STAGE III (50 – 80% conversion): • Tidak ada monomer dan emulsifier terlarut, emulsifier micelles, tetesan monomer atau monomer-swollen micelles. • Karena tetesan monomer tidak ada, maka kecepatan polimerisasi berhenti, yang ditandai dengan habisnya monomer dalam partikel latex. • Di akhir polimerisasi (konversi 100%), sistem mengandung partikel polimer (400–800 Å) yang terdispersi dalam fasa air. Tahapan dalam polimerisasi emulsi