Transcript Document
Deformed relativistic Hartree Bogoliubov model in a WoodsSaxon basis Shan-Gui Zhou Institute of Theoretical Physics Chinese Academy of Sciences Beijing Collaborators: J. Meng (Peking Univ., Beijing) P. Ring (Tech. Univ., Munich) 中日Nuclear Physics 2006 2006年5月16-20日,上海 Contents Introduction Hartree Fock Bogoliubov theory in coordinate space Contribution of the continuum Relativistic Hartree (Bogoliubov) theory in a WoodsSaxon basis A brief introduction to RMF Spherical RMF in a Woods-Saxon basis Deformed RHB in a Woods-Saxon basis Summary 2015/7/7 2 Exotic nuclei 2015/7/7 3 Characteristics of halo nuclei Weakly bound; large spatial extension Continuum can not be ignored 2015/7/7 4 BCS and Continuum 1 r ~ U r 2 r ~ V r Positive energy States Even a smaller occupation of positive energy states gives a non-localized density Bound States 2015/7/7 Dobaczewski, et al., PRC53(96)2809 5 Contribution of continuum in r-HFB 1 r ~ U r 2 r ~ V r Positive energy States • V(r) determines the density • the density is localized even if U(r) oscillates at large r Bound States 2015/7/7 Dobaczewski, et al., PRC53(96)2809 6 Hartree-Fock Bogoliubov theory Deformed relativistic HFB in r space Terasaki, Flocard, Heenen & Bonche, NPA 621, 706 (1996) Stoitsov, Dobaczewski, Ring & Pittel, PRC61, 034311 (2000) Terán, Oberacker & Umar, PRC67, 064314 (2003) Deformed relativistic Hartree-Bogoliubov or Hartree-FockBogoliubov theory in harmonic oscillator basis Vretenar, Lalazissis & Ring, PRL82, 4595 (1999) No deformed relativistic Hartree-Bogoliubov or HartreeFock-Bogoliubov theory in r space available yet 2015/7/7 7 Relativistic mean field model 1 L i i M i U ( ) g i i 2 1 1 2 m g i i 4 2 1 1 2 R R m g i i 4 2 1 13 F F e i A i 4 2 Serot & Walecka, Adv. Nucl. Phys. 16 (86) 1 Reinhard, Rep. Prog. Phys. 52 (89) 439 Ring, Prog. Part. Nucl. Phys. 37 (96) 193 Vretenar, Afnasjev, Lalazissis & Ring Phys. Rep. 409 (05) 101 2015/7/7 Meng, Toki, Zhou, Zhang, Long & Geng, Prog. Part. Nucl. Phys. In press 8 RMF: advantages > Nucleon-nucleon interaction Mesons degrees of freedom included Nucleons interact via exchanges mesons Relativistic effects Two potentials: scalar and vector potentials > the relativistic effects important dynamically New mechanism of saturation of nuclear matter > Psedo spin symmetry explained neatly and successfully Spin orbit coupling included automatically Anomalies in isotope shifts of Pb > Others More easily dealt with Less number of paramters … 2015/7/7 9 RMF (RHB) description of nuclei Ground state properties of nuclei Binding energies, radii, neutron skin thickness, etc. Halo nuclei RMF description of halo nuclei Predictions of giant halo Study of deformed halo: long-term struggle Symmetries in nuclei Pseudo spin symmetry Spin symmetry Hyper nuclei Neutron halo and hyperon halo in hyper nuclei … Meng, Toki, Zhou, Zhang, Long & Geng, Prog. Part. Nucl. Phys. In press Vretenar, Afnasjev, Lalazissis & Ring Phys. Rep. 409 (05) 101 2015/7/7 10 11Li:self-consistent RMF description Meng & Ring, PRL77,3963 (1996) 2015/7/7 11 Deformed Halo? Deformed core? Decoupling of the core and valence nucleons? 11,14Be Ne isotopes … Misu, Nazarewicz, Aberg, NPA614(97)44 Bennaceur et al., PLB296(00)154 Hamamoto & Mottelson, PRC68(03)034312 Hamamoto & Mottelson, PRC69(04)064302 Poschl et al., PRL79(97)3841 Nunes, NPA757(05)349 Pei, Xu & Stevenson, NPA765(06)29 2015/7/7 12 RMF in a Woods-Saxon basis: progress Shapes Mean field or Beyond Schrödinger W-S basis Dirac W-S basis DWS √ Axially Rela. Hartree + BCS deformed DRH DWS √ Axially Rela. Hartree-Bogoliubov deformed DRHB DWS √ Triaxially Real. Hartree-Bogoliubov deformed TRHB DWS Spherical Rela. Hartree SRH SWS SRH Many difficulties to solve deformed problem in r space Woods-Saxon basis might be a reconciler between the HO basis and r space 2015/7/7 13 Spherical Rela. Hartree Theory: 72Ca Zhou, Meng & Ring, PRC68,034323(03) Woods-Saxon basis reproduces r space 2015/7/7 14 Deformed RHB in a Woods-Saxon basis Axially deformed nuclei km ukm,i aim vkm,i~ a~im i ukm,i im rp U km rp m V rp v m ~ ~ rp k i k ,i im 1 iGi ( r )Ym ( ) im ( rp) r Fi ( r )Ym ( ) rp; r ' ' p' U E r ' ' p' U E rp hrp; r ' ' p' E d r ' * p rp; r ' ' p' hrp; r ' ' p' VE r ' ' p' VE rp 3 2015/7/7 ukm,i vkm,i~ 15 Deformed RHB in a Woods-Saxon basis him ,i ' ' I mi~ ,i ' ' mi ,i '~ ' V r V r Y mi ,i '~ ' him~,i '~ ' I S r S r Y , even , zero him ,i ' ' drGi r Gi ' ' r V r S r Fi r Fi ' ' r V r S r A , , ' , m S r,1 2 Y SM S 1 2 SM ; p1 p2 r SM S mi1 1 ,i2~2 2015/7/7 , even or odd , 0 or 1 1 S M S , SM;S 1 p1 2 p2 drRi1p11 r Ri2p2 2 r SM ; p1 p2 r 2 SM S p1 p2 16 Pairing interaction Phenomenological pairing interaction with parameters: V0, 0, , and a cut off parameter Ecut r 1 V pp V0 1 1 r1 r2 1 1 2 0 4 Meng & Ring, PRL77,3963 (1996) Phenomenological relativistic pairing force with parameters: c0 and a cut off parameter Ecut v0 v pp pp 2 2 s 1 2 v V pp V V V s pp c0 C C C 1 2 r1 r2 Cs 2015/7/7 g g , C m m 2 v Serra & Ring, PRC65,064324 (2002) 17 Routines checks: comparison with available programs > Compare with spherical RCHB model Spherical, Bogoliubov Compare with deformed RMF in a WS basis Deformed, no pairing Compare with deformed RMF+BCS in a WS basis Deformed, BCS for pairing 2015/7/7 18 Compare with spherical RCHB model< 20Ne, NL3, Rmax = 10 fm, r = 0.2 fm V0 = 200 MeV fm3, Ecut= 100 MeV 2015/7/7 19 Compare with deformed RMF in a WS basis< 2015/7/7 20 Compare with deformed RMF+BCS in a WS basis < 2015/7/7 21 Summary To study exotic nuclei, particularly halo Weakly bound and large spatial extension Continuum contribution The relativistic mean field model has been extensively and quite successfully applied to exotic nuclei Ground state properties of nuclei Halo, giant halo, hyper halo, etc. Pseudo spin and spin symmetries Deformed relativistic Hartree Bogoliubov theory in a WoodsSaxon basis Continuum contribution in deformed nuclei, deformed halo, shell structure evolution, super heavy nuclei, etc. 2015/7/7 22 Shan-Gui Zhou ITP-CAS Beijing Thanks 2015/7/7 23